
TWR-10075

FINAL REPORT

SPACE SHUTTLE SRM INTERIM CONTRACT

28 June 1974

By

THIOKOL/WASATCH DIVISION
A Division of Thiokol Corporation

P.O. Box 524, Brigham City, Utah 84302

Prepared For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

George C. Marshall Space Flight Center

Contract NAS8-30754

(NASA-CR-120404) SPACE SHUTTLE SRM N74-32296
jINTERIM CONTRACT, PART 1 Final Report
(Thiokol Chemical Corp.) 149 p HC
$10.50 CSCL 22B Unclas

G3/31 46910



CONTENTS

Page

1.0 INTRODUCTION AND SUMMARY ................... 1

2.0 DESIGN REQUIREMENTS ........................ 5

3.0 SRM PRELIMINARY DESIGNS ..................... 19

3.1 Motor Performance . ................... ...... 19

3.1.1 Preliminary Design Data for Space Shuttle SRM

Configuration 1 Model TU772/40A. . .... . . ... 26

3.1.1.1 Basic Motor Description ............ ...... ...... 26

3.1.1.2 Performance ................... ............... 27

3.1.2 Preliminary Design Data for Space Shuttle SRM

Configuration 1-1 Model TU772/42C . . . . . . .. ..... 33

3.1.2.1 Basic Motor Description .......................... 33

3.1.2.2 Performance ............. .......... ......... . 39

3.1.3 Preliminary Design Data for Space Shuttle SRM
Configuration 1-1A Model TU772/42D ................ 39

3.1.3.1 Basic Motor Description ....... ................ 39

3.1.3.2 Performance ................................. 42

3.2 Case and Structural Analysis ................ 48

3.2.1 Case .................................. 48

3.2.1.1 Case Wall Thickness Calculation ................... 50

3.2.1.2 Grit Blast ............ ..... ..... ........... 51

3.2.1.3 Analytical Procedure ........................... 51

3.2.1.4 Skirt Attachment Joints .... ....... .............. 55

3.2.1.5 Aft ET Attach Ring ............. ........ ...... .. 59

3.2.1.6 Water Impact ................ .................. 62

3.2.1.7 Slapdown .................................... 70

3.2.1.8 Cavity Collapse ................. 70
3.2.1.9 Penetration .... ....... ... ....... ............ . 78
3.2. 1. 10 Aft Dome ....... ...... .. ...... . ..... . 78

3.2. 1. 11 Nozzle .... ...... ........ ................. . 81

3.2.1.12 Aft Peaking Loads ............................. 81

3.2.1.13 Forward Peaking Loads ....................... 91

3.3 Nozzle............... .... .......... ..... 93

3.3.1 Nozzle Material Selection .................... 93

3.3.1.1 Mat Tape ................................... 101

ii



CONTENTS (Cont)

Page

3.3.1.2 Hybrid Tape .......... 102

3.3.1.3 Molding Compound .............................. 102

3.3.2 Plastic Materials Safety Factor Interpretation ........... 117

3.3.3 Aft Skirt and Actuation System Interface ... ......... 123

3.3.4 Nozzle Field Joint .......... ................... 134

3.3.5 Nozzle Cutoff ................................. . . . . . .. 136

3.4 Propellant ............... ... ...... .... .. . 140

3.4.1 Crain Design ................................. 140

3.4.2 Motor Specific Impulse ................. ......... 147

3.4.3 Minimum Specific Impulse ................ .... .. . 152

3.5 Insulation and Liner ............................. 156

3.5.1 Case Internal Insulation Temperature Study ............ 156

3.5.2 Aft Case Insulation Thickness ...................... 159

3.6 SRM Design Study ................... .. ... ..... 160

4.0 VIBRATION AND ACOUSTIC DATA .................. 180

5.0 LAUNCH SITE ASSEMBLY AND STACKUP TOLERANCE .... 182

6.0 SRM DDT&E Schedule........................... 188

APPENDIX A

iii



ILLUSTRATIONS

Figure Page

2-1 Water Impact and SRM/ET Attach Requirements ........... 6

2-2 SRM Requirements - Geometry....................... 9

2-3 SRM Requirements - Performance .................. 10

2-4 Representative SRM Performance Data ................ 12

2-5 Residual Force and SRM Thrust Shape Data, RI Case 370 . . . 14

2-6 Residual Force and SRM Thrust Shape Data, RI Case 371 . 15

2-7 Residual Force and SRM Thrust Shape Data, RI Case 372 . . . 16

2-8 Residual Force and SRM Thrust Shape Data, RI Case 373 . . . 17

3-1 Case Fabrication Constraints at 146 In. Diameter ........ 21

3-2 Case Fabrication Constraints ................. ..... 24

3-3 Motor Layout, Configuration 1 ......... ........... 28-29

3-4 Thrust Versus Time Configuration 1 ................. 34

3-5 Motor Layout, Configuration 1-1 .................... 35-36

3-6 Thrust Versus Time Configuration 1-1 ................ 41

3-7 Motor Layout, Configuration 1-1A .................... 43

3-8 Thrust Versus Time Configuration 1-1A ............... 47

3-9 Weight Versus Pressure ........................... 53

3-10 Clevis Type Attachment Mechanism for
Forward Skirt (SK50183) ............................ 56

3-11 Clevis Type Attachment Mechanism for
Aft Skirt (SK50184) ............................... 57

3-12 Aft Attach Ring Frame Analysis (Configuration 1-1) ....... 60

3-13 Aft Attach Ring Results of Discontinuity Analysis
(Configuration 1-1) ........... .................. 61

3-14 ET Attach Ring - Liftoff Condition Plus 861 psi
Internal Pressure (Configuration 1-1) ................. 63

iv



ILLUSTRATIONS (Cont)

Figure Page

3-15 Combined Stress Distribution in SRM Case on the
Meridian Containing Strut Load "P2" (Configuration 1-1) .... 64

3-16 SRB Cavity Collapse - STAGS Analysis Results ......... 66

3-17 Slapdown Results, t = 0. 486 ........................ 71

3-18 SRM Case Buckling Parameters (Slapdown 8 = -10 Deg) .... 72

3-19 BOSOR Slapdown Results .............................. 73

3-20 SRB Slapdown - STAGS Analysis Results .............. 74

3-21 Cavity Collapse Summary ..... ........ ............ 76

3-22 Cavity Collapse BOSOR 4 Results ................... 77

3-23 Aft Dome Buckling Calculations Summary .............. 82

3-24 Nozzle Analysis (Max Pitch, 0 = 0 Deg) ............... 83

3-25 SRM Nozzle Buckling Analysis - Configuration 0 (Max Axial
Acc, 0 = -10 Deg - Initial Undeformed Structure) ......... 84

3-26 Nozzle Showing Char Line ......................... 85

3-27 SRM Case Aft Peaking Loads Analysis NASTRAN Model .... 89

3-28 Stress Distribution (psi) - Aft Peaking Loads
(Ref: S & E-ASTN-AS (74-15))....................... 90

3-29 Effect of Forward Peaking Loads (Configuration 1-1) ...... 92

3-30 Baseline Low-Cost Nozzle - Configuration 0 ............ 95

3-31 SRM Nozzle - Configuration 1 ...................... 96

3-32 SRM Nozzle - Configuration 1-1 ... .... .... . . 97

3-33 SRM Nozzle - Configuration 1-1A .......... ........ 98

3-34 Small Motor Firings ................. .......... 107

3-35 Poseidon C3 First'Stage Low-Cost Nozzle (Tested
5 July 1973) ................... ... . .... ....... 110

3-36 Low-Cost Materials Test Performance Comparison ....... 112

V



ILLUSTRATIONS (Cont)

Figure Page

3-37 Material Matrix Subscale (C3 Size) Motor Tests ......... 114

3-38 Development Schedule .................. .......... 115

3-39 Plastic Material Safety Factor Interpretation ........... 118

3-40 Baseline Low-Cost Nozzle ........................ 119

3-41 Revised Baseline Design Low-Cost Materials - NASA
Safety Factors ....... ....................... .. 120

3-42 Baseline Design High-Cost Materials - NASA Safety
Factors ................................................. 122

3-43 Submergence Comparison ......................... 126

3-44 Field Joint .................................. 135

3-45 Nozzle Cutoff Device............................ 137

3-46 Penetration and Cut by RDX Core Copper Sheath LSC ...... 138

3-47 SRM Requirements - Performance .................. 141

3-48 Comparison of Surface-Web Histories ................ 142

3-49 Vacuum Thrust Versus Time ...................... 144

3-50 Grain Configuration (TC-526-04-01A) .. . ............ 145

3-51 Grain Configuration (TC-526-04-01B). ................ 146

3-52 11-Point Star Geometry ......................... 149

3-53 Comparison of Vacuum-Thrust Time Performance........ 150

3-54 Delivered Specific Impulse Versus Nozzle Length-to-
Throat Radius Ratio ......... ................... 153

3-55 SRB Water Entry at Splashdown (Case Insulation
1.5 In. Thick Exposed 80 Seconds) .................. 157

3-56 Design and Optimization Program.. .............. 162

3-57 Case Segment Configuration* ....... .......... ..... 170

3-58 Case Fabrication, Constraints ...................... 171

vi



ILLUSTRATIONS (Cont)

Figure Page

3-59 Comparison of Propellant Loading in Three Aft Closure
Designs for Configuration 1 ....................... 173

3-60 Delivered Specific Impulse Versus Nozzle Length-to-
Throat Radius Ratio ............................ 174

3-61 Maximum G* as a Function of Increased Propellant
(AWp) Configuration 1 ........................... 175

5-1 Total Offset From True Centerline ........... ...... 183

5-2 Maximum Offset Due to Angularity Variation Between
Segments .................................... 184

5-3 Rotational Maximum Misalignment .................. 186

6-1 Preliminary Schedule E ........................ 189

vii



TABLES

Table Page

I Dimensional, Weight, and Performance Data ........... 3

II Comparison of SRM Designs Generated by RI and TC ...... 18

III Summary of Motor Dimensions (Configuration 1) ......... 30

IV Weight and Center of Gravity Summary (Configuration 1) .... 31

V Nozzle Characteristics and Design Criteria
(Configuration 1) ......................... ... 32

VI Summary of Motor Dimensions (Configuration 1-1) ....... 37

VII Weight and Center of Gravity Summary (Configuration 1-1) . . 38

VIII Nozzle Characteristics and Design Criteria
(Configuration 1-1) ............................ . 40

IX Summary of Motor Dimensions (Configuration 1-1A) ....... 44

X Weight and Center of Gravity Summary (Configuration 1-1A).. 45

XI Nozzle Characteristics and Design Criteria
(Configuration 1-1A) ............................ 46

XII SRM Buckling Summary - Water Impact Loads .......... 65

XIII Slapdown BOSOR Summary Sheet ................... 75

XIV Cavity Collapse BOSOR Summary Sheet ............... 79

XV Penetration BOSOR Summary Sheet .................. 80

XVI Nozzle Buckling Analysis ........................ 86

XVII Nozzle Summary Data........................... 94

XVIII Actuator Torque Summary.......... ............... . 99

XIX Material Properties From Thiokol Laboratory Tests ...... 109

XX Submergence Comparison ......................... 125

XXI Results From RI Analysis of SRM Designs ............. 148

XXII Specific Impulse Losses ......................... 151

XXIII Performance Interchange Summary ................. 155

viii



TABLES (Cont)

Table Page

XXIV Summary ................................... 165

XXV Impact of Design Changes From Configuration 0 to 1 ....... 167

XXVI Mass Properties Summary .(Weight-Lb) ............... 168

XXVII Case Weight Change Due to Water Impact and Revised
SRM/ET Attachment ........................... 169

XXVIII SRM Configuration Comparisons .................... 176

XXIX SRM Configuration Comparisons ................... 177

XXX Angular Offset ............................... 187

ix



1.0 INTRODUCTION AND SUMMARY

This report summarizes results of the Space Shuttle Solid Rocket Motor (SRM)

Interim Contract, NAS8-30754, and is submitted in response to Section 3.3 of

Contract Exhibit A.

The SRM Interim Contract was awarded to Thiokol on 14 February 1974

for the purpose of conducting essential studies and analyses required to integrate

the SRM into the booster and overall Space Shuttle system. Emphasis was placed

on the case, nozzle, insulation, and propellant components with resulting performance,

weight, and structural load characteristics being generated. The initial award was

for a 90-day period. A subsequent extension of 45 days carried the contract period

through 28 June 1974.

Effort conducted during the time period of this contract included studies,

analyses, planning, and preliminary design activities. Technical requirements

identified in the SRM Project Request for Proposal No. 8-1-4-94-98401 (Volumes I

and II) and Thiokol's proposed SRM design (designated Configuration 0) established

the basis for this effort. The requirements were evaluated jointly with MSFC and

altered where necessary to incorporate new information that evolved after issuance

of the RFP and during the course of this interim contract. Revised water impact

loads and load distributions were provided based on additional model test data

and analytical effort conducted by NASA subsequent to the RFP release. Launch

pad peaking loads into the SRM aft skirt were provided which also represented a

change from RFP requirements. A modified SRM/External Tank (ET) attachment

configuration with new structural load data was supplied by NASA, and direction was

received to include a 2 percent inert weight contingency.

Impact of these changes on the SRM design were evaluated by developing

preliminary SRM designs optimized for low cost. Adjustments were made in some

of the RFP performance partials in order to more closely approximate the flight

performance desired from the SRM. Effort was -also initiated to utilize SRM residual

thrust versus time as performance criteria for sizing the SRM. These criteria are
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provided from simulated computer flight trajectories. These changes in performance

criteria were brought about primarily by significant changes in water impact loads,

launch pad loads, and the inclusion of an inert weight contingency. Considerable

effort was expended evaluating the SRM case and nozzle structure in relation to the

revised water impact and launch pad loads. Calculations using BOSOR, NASTRAN,

and STAGS (in conjunction with MSFC personnel) were conducted to determine

optimum combinations of material thickness and stiffener requirements to react

the imposed loads. Modifications to Thiokol's SRM automated design program (ADP)

were made to account for increased structure to react the greater loads and the

inclusion of an inert weight contingency.

Motor parameters such as maximum expected operating pressure (MEOP),

nozzle expansion ratio, and nozzle length-to-throat radius ratio (L/Rt) were varied

to assess the impact such changes had on motor sizing and cost. Cost optimization

studies were conducted in which many motor parameters were allowed to vary

simultaneously in order to determine the minimum SRM project cost.

Two 146-in. diameter SRM configurations evolved which provide capability

to withstand the latest water impact and launch pad loads while providing approximately

660 pounds payload margin (Configuration 1) and 1, 900 pounds payload margin

(Configuration 1-1). Table I summarizes dimensional, weight, and performance

data for these two configurations.

During the design study a third SRM design was generated which maximized

the payload margin within the dimensional constraints established for Configura-

tion 1-1. The approach used to generate this design was to use residual force

versus time data developed from flight performance data rather than the RFP

performance requirements. After reviewing several candidate designs, a config-

uration that minimized the total SRM weight while maximizing the potential payload

margin was selected as a new SRM baseline. This design, Configuration 1-1A,

provides a payload margin ranging from 3, 000 to 4, 000 pounds depending upon the

shape of the thrust-time trace. The principal dimensional, weight and performance

parameters for this configuration are also summarized on. Table I.

2



TABLE I

DIMENSIONAL, WEIGHT, AND PERFORMANCE DATA

Configuration 1 Configuration 1-1 Configuration 1-1A

Dome-to-Dome Case Length (in.) 1,352 1,378 1, 378

Overall Motor Length (in.) 1,469 1,496 1,496

Total Inert Weight (1b) 134,200 137,800 144, 560

Total Propellant Weight (lb) 1,072,300 1,090,400 1,102, 000

Total Motor Weight (lb) 1,206,500 1,228,200 1,246,560

Nozzle Throat Diameter (in.) 56.6 57.3 54.4

Nozzle Expansion Ratio (initial) 6:1 6:1 7.16:1

Nozzle L/Rt (initial) 5 5 5.28

MEOP (psia) 865 876 952

Average Vacuum Specific Impulse (sec) 258.9 258. 9 262. 2

Total Vacuum Impulse (million lbf-sec) 277.62 282.31 288.9

Action Time (sec) 124 124 122.2

Payload Margin (provided by SRM) (Ib) 660 1, 890 3, 000-4, 000



This report is organized in six sections. Following Section I, Introduction

and Summary, is Design Requirements, Section II. Details of the significant

design requirement changes are provided. Section III, SRM Preliminary Designs,

discusses the motor performance studies and contains subsections describing major

SRM components including pertinent information generated during this contract.

Vibration and acoustic data are presented in Section IV and Appendix A.

Section V contains information on the SRM stackup tolerance. SRM DDT&E schedules

are presented and discussed in Section VI.

4
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2.0 DESIGN REQUIREMENTS

Design requirements identified in Request for Proposal (RFP) 8-1-4-94-98401

were used as the basis for effort conducted during this interim contract. These

basic requirements were modified to include test and anaylsis results available from

NASA effort conducted subsequent to the RFP release and joint NASA/Thiokol effort

conducted during this interim contract.

The more significant changes included water impact loads, launch pad loads,

SRM/ET attach configuration and loads, inclusion of 2 percent inert weight con-

tingency, fixed SRM diameter at 146 in., SRM length increase, and updated thrust/

impulse criteria.

During the period from receipt of RFP through the end of the interim con-

tract, there was a significant change in the loading requirements for the SRM. This

load evolution was primarily a result of additional testing and analytical development

by MSFC. Figure 2-1 presents a traceable summary of the design loads as they

existed at four distinct time points:

1. At the time of the RFP (July 1973) when loads were

defined in Volume II, Section V, Appendix H.

2. At the beginning of the interim contract when new

loads were defined in loads document S & E-ASTN-

ADL (73-68).

3. During the interim contract when certain load

modifications and additions had been made by

various means as outlined in figure 2-1.

4. At the end of the interim contract after revised

water impact loads were introduced as shown in

figure 2-1.

One of the most notable changes which occurred between the period from

(1) - (3) above was the addition of a cavity collapse loading requirement. This

condition, which was not covered in the RFP, imposes some very significant over-

pressures on the aft segments of the case. These pressures which are applied in

5



CRITERIA FOR CONFIGURATIONS
SRM DESIGN CONFIGURATION 0 1, 1-1, AND 1-1A

DATE RFP JULY 1973 14 FEB, STACT OF 0-DAY CONTRACT 30 APR 1974

WADING EVENT CONDITION LOAD CONDITION LOAD CONDITION IAD

SLAPDOWN (15 MAR)

V = VERTICAL VELOCITY V =80 FT/SEC V T/SEC P - J(0.Z) V FIT/EC *PMfi24.

VH = HORIZONTAL VELOCITY V 0 PAX = 32 PSI V 15 /SEC PMA 3 PSI V 4 FT/SEC P 
=  

(Z)

N = ENTRY ANGLE 8 = UNDEFINED DISTRIBUTION PEN: -10 DISTRIBUTION PEl: l -5 DISTRIBUTION PER:
E T NE FI- S1 AND 16 APPEN 1' 2. NT - I. FIGURE HI-2S

5FP -I-4-94-NN & E-ATN-ASL (-VC) S E-ASTN-DL (13-

P = PRESSURE ON SRM

CAVITY COLLAPSE NONE v I' FT/SEC P , (0Z) pA lIP)

VII 45 FT/SEC PMAX 15 PSI V - FT/SEC *P 
= 
166 pSI

S= -10 DISTRIBUTION PER: V 30 FT/SEC LOAD DISTRIBUTION PER:

FIG 1E-16 5 J FIGURE IA

S & E-ASTN-ADL (715-68) s E-SRB(14-114

PENETRATION V 'sO FT/SEC h (1. I IN. I. I0 VT/SEC hMA
X 
= i0.5 IN. - SAME

h 
= 

PENETRATION DEPT
H  

V 0 FT/SEC P f I(h) V o FI/SEC P - f(hl
MEASURED FWD FROM WITH NOZ EXT PX 18.: VI AT TP 0 -, P 22.2 PSI AT TP
AFT TAN POINT (TP)EI o MAX N 1AX

0=0 FL VIE 14 APPEN II (1YI)I)SIATIC PRESSURE)
P PRESSURE ON SRM

MAX AXIAL DECELERATION V s80 FT/SEC p l VSI (NIlI Io VoF/SEC P 26 PSI IOME) (15 MAR)

V 
= 

0 FT/SEC 2 : 3 PSI (NOZ "I'IHlOAT) -13 1ISEC P2 170 PSI V - 100 FT/SEC P 253 PSI AFT CLOSURE

0 o P:t PSI (SKIHI Io I' 
t 

Io I'lS ViI 45 FT/SEC P2 _ 160 PSI

P, 4 PSI )OIM E P, IO PSI 8 5 P3
= 

159PSI

SEE I .5, APPEI'N II, 11P SEE Fi; Ill-u P4 113 PSI

S E-ASi'N-ADL (73-18) SEE FIG HI-10

S & E-ASTN-ADL (73-69)

M AX PITCH 1 o FTL, SE C In, ' C 66 I A C I "A'.. (IA. ( DOMEA )

V 0 -Il TSEC UNE INIED 1 VI S6EC 15 I S I SI I FT/SEC P 48 PI A8 PME)

0-0 a -1 1 :i . p I 45 FT/NEC P2
= 

11 PSI

I t' 151S I o P 5.0 PSI, ,I 0 PS=I.0P

I's 1 PSI P4 148 PSI

' 1' PSI P51=1 PS1

N & E-ASTN-AI)L 73lI U P = 150 PSI

S & E-ASTN-ADL (73-68)

AFT SIGHT 11 IN R I IX II F  
AME

ORBITElt I'.EI)EI O ET 1101. o KNIi IM
PEAKING WLOADS OITE CLE E NOI,1L DIS.RIITION I:Ifl. 1 3.1 32, 0 I.B IN.

NM = (MAX LIVE LIADS) (STATION 19001) N I' I I III . N D - ISI : ET (IlIM Il

M = BENDING MOMENT I - .25 S I IN.-LB 5 1 :-ASiN-AS (71-15I

P = AXIAL LOAD P - 1.51 X l
t 

LD SEE FII; 1-7 APPI'I'EN 11, 1

- (COMPRESSIVE)

FWDSKIRT SIIB MAN N II, - SANE
ACC ELEitA' IN N, N P AL II TBE IINMON N 1.1-26, It 1. IN.

PEAKING LOADM E ' IH3 LI-)
(STATION - o • N AKN; SI. MAXN --NTIMA I EI

NMAX =MAX LIVE LOADS) 
= 
11S X I0I IN. -LB EFFECTI'S DEFINEID AC(CIIT:Vll3 Clt I:.1AE

(COMPRESSIVE p -2 X Iton in.-LB TABLE I-I \IPEN II, RI'P )[STI1/I ON PER:

S(TENSILE) S & I-AS NI-As 17-1 -5,

ET ATTACH LOA 36 ,AX S iB G;IMBALIFT 1I F STI SAAM

LOAD POSITIVE AS SHOWN fit IQ B(KSI1 T Pl 137,:3o l.B I
f
I 23. L IN. -Li I 171,0-i. 11 A

M
2  
= 17.189 IN.-lB p, 15,100 Ill I 211l,0ll I.B ' -237, li; LB

30 
= 
:1 10III, I B L P 3  5, 25o LB 

-2,5 P -o Is 1

F 1 J - 1 , 2 90 L 3 - S AMA

TABLE 1-3 APPENDIX H, FR 11M 11.2 X III 5.-I , LB i I A DTOSAME

I. 2011i.001 IIIB P, - -12,000 L (15 APR. ADDITIONAL)

FI -8,110 IB P
:  

- 214, 00 L ET LII PARTIAL FILL (S & E-ASTN-ASP 74-27)

S & E-ASTN-ADL(73I-74) I DAY SIDE WIND A 0 LB

SP MAX
= 

8,521 LB (NO EFFECT)

RT HAND RIOS TER L(II.KN1iT I IIAND) SB LIiILNG
FORWARI) IORl AD

PRESSULES AS SHOWN ) NOT INCLD A 2 PSI ILLAIGE PIESRE WIIICH WAS INCLUDIIED IN ALL ANALYSES

Figure 2-1. Water Impact and SRM/ET Attach Requirements
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a highly asymmetric manner present a design requirement which has significant

impact on the case design.

Thiokol has identified the specific cavity collapse condition listed in figure 2-1

as the most dominant in terms of effect on the two aft cylindrical case segments.

The baseline slapdown design condition has changed from the RFP conditions

of 80 ft/sec vertical velocity (VV), and zero horizontal velocity (VH), to VV =

100 ft/sec and VH = 45 ft/sec at the end of the interim contract. The entry angle

(0) also evolved from an undefined value in the RFP to -10' at the beginning of

the interim contract and was subsequently reduced to -5' during the interim

contract.

Configuration 0 which was evaluated under the terms of the RFP was adequate

for the VV = 80, VH = 0 condition. As the slapdown loading conditions changed at

the beginning of the interim contract, analytical investigations revealed that con-

figuration 0 was not adequate for the new loads. During the interim contract, the

entry angle design value was reduced from -10' to -50 as a result of further NASA

probability studies. At this angle, all configurations considered (0, 1, 1-1, and 1-1A)

were capable of withstanding slapdown loads without design modifications specifically

incorporated to accommodate slapdown.

The baseline penetration conditions changed from VV = 80 ft/sec, VH = 0

to VV = 100 ft/sec, VH = 0 during the time between the RFP and the interim con-

tract. However, this requirement is completely overpowered by the cavity

collapse requirement and, consequently, is not a design driver.

Significant changes also occurred in the maximum acceleration condition

pressure distributions in the aft skirt cavity between the RFP and the end of the

interim contract. For instance, the maximum pressure on the aft dome increased

from 54 psi to 253 psi as a result of the change. This pressure increase resulted

in some relatively high aft dome membrane thicknesses early.in the interim contract

effort. However, an agreement between TC and NASA personnel concerning

analytical evaluation techniques resulted in reduced membrane thickness

7



requirements. Configuration 1-1 with a maximum expected operating pressure

(MEOP) of 861 psig represents the transition condition between internal pressure

and external pressure critical conditions. In other words, for the specific design

parameters involved (strength, size, and factor of safety requirements), if MEOP

is 861 or above, the membrane thickness will be controlled by internal pressure

requirements. If MEOP is less than 861 psi, the aft dome thickness will be con-

trolled by external pressure which occurs at Z max during water impact. Other

pressure distributions which occur during this condition are listed in figure 2-1,

but are of little consequence as far as direct impact on the design of the SRM case.

The maximum pitch condition is essentially new since the RFP where

pressure distributions were undefined. The final design conditions do not appear

to present significant design considerations.

The RFP included a comprehensive listing of the bending, shear, and axial

loads predicted for prelaunch conditions. The one-hour wind from orbiter to ET

was identified by TC as the critical condition and Configuration 0 was evaluated

under the effects of this loading and found to be adequate. However, at the time

of the RFP these ground loads were assumed to be distributed with normal

MC VQ P
, , and A load distributions.

As the design of the aft support skirt developed it was predicted by NASA

that there would be a load peaking effect; resulting in higher case stress levels than

would exist under the assumptions of normal load distributions. This new con-

dition created the necessity for design changes in the membrane thickness of the

aft skirt and aft cylindrical segment thickness of Configuration 0.

A sinilar load peaking effect was defined for the forward sections of the

case near the thrust takeout point. Investigation revealed, however, that these

forward peaking loads were not sufficiently high to have an appreciable effect on

the case design.

Under the terms of the RFP the aft attach loads between the SRM and the

ET were to be induced into the SRM through a load ring at three load points. These

load points consisted of a shear pin and two struts with all induced loads tangential

8



to the ring. Subsequent loading concepts received during the interim contract

reflected a two strut-sway brace configuration which induced both radial and

tangential load components into the ring. A "T" section load ring which was in-

corporated in Configuration0 was found to be inadequate under the effects of the

new attach concept.

SRM geometry changes also occurred from the RFP to those currently used.

Figure 2-2 defines the RFP values and the dimensions identified by NASA during

the 90-day effort.

Figure 2-3 presents ballistic performance values defined in the RFP and

modified values which evolved during the interim contract effort. These changes

were made to update the SRM performance requirements to account for increases

in weight caused by other requirement changes.

RFP (MOTOR DIMENSIONS IN.INCHES)

992.5 - 426 +10

21 MAX STA 1515 21 MAX(i ---- - *----
160 MAX

DIAMETER OPEN
REFERENCE INERT WEIGHT 115,430 LB

CURRENT
,U E 988.5 478.6

160 MAX

1,496 STA 1511

DIAMETER 146 IN.
REFERENCE INERT WEIGHT 135, 136 LB

Figure 2-2. SRM Requirements - Geometry
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Figure 2-3. SRM Requirements - Performance



During most of the interim contract period, SRM designs were sized using

values specified for initial thrust and delivered impulse at three points in time

during motor operation as shown in figure 2-3. Configurations 1 and 1-1 were de-

signed using requirements stated in this form. Subsequent evaluation of the flight

performance of these two configurations by RI revealed that the payload margin was

lower than anticipated. This prompted action to use a different method for specifying

SRM performance requirements. The method proposed was to establish a force-

time requirement that must be supplied to the Shuttle vehicle by the SRM in order

to provide a specified payload margin. This force, referred to as the "force-to-

the bolts, " is that required to produce a desired vehicle acceleration-time profile.

By using this force data it is possible to shape the thrust time trace of an SRM

to precisely match the required flight performance and thus provide the desired

payload margin. This method was evaluated by Thiokol and proved to be an

effective approach for generating SRM designs that deliver the required flight

performance without the need for specifying specific motor parameters. As a

result the method was incorporated in Thiokol' s Automated Design Program (ADP)

and used to establish design parameters for a new SRM Baseline referred to as

Configuration 1-1A. Figure 2-4 presents the residual force and trajectory goals

provided.

The design calculations intorduced into the motor sizing subroutine of the

ADP to determine the required SRM thrust-time trace necessitates input of residual

force, vehicle acceleration, SRB inert weight, and ambinet pressure all as a function

of time. Using the above data the routine solves for thrust by summing the residual

force and the force required to accelerate the SRB. The thrust-time data are then

used to size an SRM design. Included in the sizing calculations are burning surface

area versus thickness burned data for the propellant grain required to.generate the

specified residual force and acceleration traces. Since the SRM weight is required

to determine thrust from the input data, the final design solution is arrived at by

iterating several times through the routine.

11
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Figure 2-4. Representative SRM Performance Data



The residual force data for four thrust-time traces were provided by RI

for SRM sizing using the ADP. Along with the residual force data, RI sent SRM

designs calculated by their SHAPE program to generate the specified performance.

Each design was configured to provide a total payload margin of 7, 000 pounds,

3,000 pounds from the ET and 4,000 pounds from the SRM assuming an ET dry and

residual weight of 75, 000 pounds. The residual force data and typical SRM thrust

shape data for the four cases (RI case numbers 370 through 373) are presented on

figures 2-5, 2-6, 2-7, and 2-8. The thrust-time trace for Case 370 was shaped

to approximate the trace of Thiokol's proposal design (Configuration 0). The other

three traces were modified to reduce trajectory losses and thus illustrate (along with

Table II) the effect of thrust or flight profile shaping on SRM size. Summarized on

Table II are the propellant, inert and total weights for the four RI-generated designs.

Notice that the weights for the SRM designs decrease from Case 370 to 373 as changes

were made in the thrust-time trace. Thus, by this comparison the SRM weight can

be reduced 42, 900 pounds by shaping the thrust-time to meet the requirements of

Case 373 rather than Case 370.

Also shown on Table II are the weights for two Thiokol ADP generated designs

(case numbers 371 and 373). Since the ADP designs incorporated a higher perform-

ance nozzle and also were constrained to dimensional limits specified for Configura-

tion 1-1A, the weights for the Thiokol designs vary somewhat from the RI weights.

However, the same trend exists in that the total weight for Case 373 is significantly

less than that for Case 371. The ADP could not generate a reasonable design for

Case 370 within the dimensional constraints specified for Configuration 1-1A due

to the relatively high total impulse requirement. Thus the thrust-time traces for

Cases 371 and 373 represent performance limits for an SRM that will provide a

payload margin of 3, 000 to 4,000 pounds.

13
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1.5 3.5

3.0

1.0 2.5

0 2.0
0.5

1.5

2 1.0
S0

Crt

0.5

0 50 100 150 0 20 40 60 80 100 120 140

TIME (SEC) TIME (SEC)

Figure 2-6. Residual Force and SRM Thrust Shape Data, RI Case 371



1.5 3.5

3. 0

S10 2.5

2.0

0.5

1.5

w 1.o
P; 0 rJ

0.5

-0.5 0.0
0 50 100 150 0 20 40 60 80 100 120 140

TIME (SEC) TIME (SEC)

Figure 2-7. Residual Force and SRM Thrust Shape Data, RI Case 372



3.5

2.0

3.0

.5 2.5

S1.0 2.0

S1.0

0.0

.0.5

-0.5 0.0
0 50 100 150 0 20 40 60 80 100 120

TIME (SEC) TIME (SEC)

Figure 2-8. Residual Force and SRM Thrust Shape Data, RI Case 373



TABLE II

COMPARISON OF SRM DESIGNS
GENERATED BY RI AND TC

RI Data TC Data (2)

RI Case Weights, Ibm Weights, Ibm

No. Prop. Inert Total Prop. Inert Total

370 1,134,200 140,700 1,274,900

371 1,119,800 139,100 1,258,900 1,103,100 145,100 1,248,200

372 1,112,000 138,200 1,250,300

373 1,095,700 136,300 1,232,000 1,084,700 142,900 1,227,600

(1) Based on average delivered specific impulse of 258. 9 lbf-sec/bm
(2) Based on average delivered specific impulse of 262.2 lbf-sec/ibm
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3.0 SRM PRELIMINARY DESIGNS

3.1 MOTOR PERFORMANCE

Preliminary design data for three SRM designs referred to as Configura-

tions 1, 1-1, and 1-1A are presented in this section. The flight performance of

the configurations has been evaluated by Rockwell International (RI) using their

Shuttle Performance and Cost Evaluation (SPACE) Program. Configuration 1 was

determined to provide a payload margin of 660 pounds and Configuration 1-1 a margin

of 1, 890 pounds. The payload margin for Configuration 1-1A was determined to

range from 3, 000 to 4, 000 pounds depending upon the shape of the thrust-time trace

and the loaded propellant weight.

The SRM performance requirements specified in the RFP were used in the

initial sizing of an earlier version of Configuration 1; however, a flight performance

evaluation of this design by RI concluded that the specified minimum delivered

impulse was not adequate to provide a positive payload margin. The reasons for

this deficiency were: 1) the reference SRM inert weight specified in the RFP was

significantly less than that of the revised SRM design; and, 2) the delivered specific

impulse was somewhat less than initially predicted due to an increase in the esti-

mated nozzle losses. As a result, the RFP performance requirements for the base-

line design were changed to the following:

F = 2. 626 x 106 (1 + AW /W ) lbf
SL p p

Ia = 267.6 x 106 (1 + AW p/Wp) lbf-sec

Reference Propellant Weight = 1,072,300 lbm

Reference Inert Weight = 135,136 Ibm

Configuration 1 is a cost-optimized design capable of meeting the revised

water entry loads, launch pad loads, and ET interface requirements while providing

a small positive payload margin. An earlier version of this configuration presented

at the SRM Design Review on 9 April 1974 (reference: TWR-10046) was determined

by RI to have a negative payload margin. The delivered specific impulse of this

earlier design was increased about 0. 9 percent by modifying the nozzle. The

nozzle changes included increasing the initial nozzle expansion ratio from 5.5 to 6
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and increasing the initial throat-to-exit length/throat radius (L/Rt) from 4.45 to 5.

With this new nozzle and the propellant weight of the earlier design the current

Configuration 1 provides a 660 pound margin.

Configuration 1-1 was designed to maximize performance within a maximum

length of 1, 495.6 inches using RFP requirements. The design reflects the revised

water entry loads, launch pad loads, and ET interface requirements and provides

the maximum payload margin at a nominal increase in cost. The tangent-to-tangent

case length is about the maximum possible for an eleven-piece (nine cylindrical

segments and two closures) case design considering the revised loads and ET attach

requirements. The cylindrical segments are divided as follows:

1. Six 156-inch long common segments

2. One 86-inch segment with double flanges for an

attachment ring

3. Two common 127-inch long segments each with two

flanges for stiffening rings

A length of 156 inches is the maximum for a 146-inch diameter segment with

no upsets for flanges. Any case segment requiring provisions for local upsets for

flanges must be shorter in length. A sketch illustrating the case fabrication con-

straints for 146-inch diameter segments is shown in figure 3-1. Present estimates

are that the maximum length of a segment requiring a double flange positioned as

specified for the attach segment is about 92 inches. The maximum length of the

two aft segments requiring two flanges is estimated to be about 130 inches. Since

all the cylindrical segments are at or near the maximum length, the only way the

overall case length for Configuration 1-1 can be increased is to add an additional

segment.

Configuration 1-1 is 26 inches longer than Configuration 1 and contains

18, 000 pounds more propellant. The expansion ratio and L/Rt for the Configuration 1-1

nozzle is the same as that for Configuration 1, and, thus, the motor delivers the same

specific impulse. Due to the increased propellant weight, Configuration 1-1 delivers

4.4 x 106 lbf-sec or 1.6 percent more total impulse than Configuration 1.
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Configuration 1-1A was generated to provide the maximum payload margin

within the geometry of Configuration 1-1. The principal differences between

Configuration 1-1 and 1.IlA are that Configuration 1-1A contains 11, 600 pounds

more propellant, incorporates a higher performance nozzle, and has a thicker

case wall required to survive the latest water impact and on-pad bending loads.

The Configuration 1-1A nozzle has an initial expansion ratio of 7.16 and an L/Rt

of 5.28 and delivers an average vacuum specific impulse of 262.2 lbf-sec/lbm

which is about 1. 5 percent higher than that for Configuration 1-1.

The evolution of Configurations 1, 1-1, and 1-1A can be traced back through

several stages during the interim contract period. The structural analysis of the case

relative to the revised structural loads requirements set the pace during the entire study.

The initial step was to evaluate the effect that the new water impact loads would have

on the Configuration 0 (Thiokol proposal design) case design. The results of this

early appraisal, using the BOSOR computer code, indicated that the new slapdown

loads would require the wall thickness of the forward case segments to be increased

to 0.576 inch. This thickness was greater than that dictated by internal pressure

for ballistic performance, and, thus, established the minimum case wall for the

first design iteration. This first design was referred to as a trend design and was

reported to NASA on 20 February 1974 (reference TWR-10011). The weights for

this trend design were as follows:

Weight (ib)

Propellant 1,083,000

Case 116,120

Inert Weight 154,200

A more detailed analysis of the slapdown loads using the STAGS computer

code later proved that the wall thickness considered necessary to survive slapdown

as defined by BOSOR was quite conservative. This analysis showed that a minimum

nominal wall thickness of 0. 46 inch would be adequate for slapdown.

The next area of structural analysis activity was to determine the effect of

cavity collapse on the aft portion of the case. As attention was directed toward this
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region of the case, it was determined, through communications with the case fabricator,

that length restrictions would have to be placed on the attach segment. This length

restriction was the result of the requirement that the ET attach provision consist

of a double flange, spaced about 12 inches apart. In order to manufacture this

double flange on the attach segment, the segment length would have to be significantly

shorter than'the 142 inches incorporated in Configuration 0. The new length of the

attach segment would now vary from 100 to 135 inches depending upon the location

of the double flange relative to the distance from the joint as shown in figure 3-2.

The impact of this reduction in the length of the attach segment was that another

cylindrical segment had to be added to the case in order to load the required

propellant weight. The approach taken was to incorporate the additional segment

in the aft casting segment. As a result, the aft casting segment in all subsequent

designs would consist of an attach segment, two short segments (ranging in length

from 100 to 130 inches, depending upon propellant loading requirements), and an

aft dome. This approach was taken to preserve the commonality of the 156-inch

case segment length in the other three casting segments and also to retain the

interchangeability of the two center casting segments. In addition, the use of

two shorter case segments and an extra joint in the aft portion of the case provided

additional stiffness in a region subjected to high cavity collapse loads.

During the remainder of the study effort, several design iterations were made

to identify the optimum combinations of case wall thickness and local stiffening re-

quired to withstand the latest cavity collapse loads as a function of segment length.

One of the design iterations was reported to MSFC at the SRM Design Review on

9 April 1974 (reference TWR-10046). At this review Configuration 1 had two

107-inch aft case segments with wall thicknesses of 0.51 inch and no stiffeners.

Following this review an update by MSFC of the cavity collapse loads indicated that

this design would not be structurally adequate. As a result, the design was modified

to incorporate two stiffeners on each of the two aft segments, and an additional

stiffener was added to the attach segment. The attach segment length had to be

reduced to 86 inches to accommodate the additional stiffener. This 14-inch reduction

in length was distributed between the two aft segments, increasing the length of these
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segments to 114 inches. This case design with the shortened attach segment and

two stiffeners on both aft segments was incorporated in both Configuration 1 and 1-1

designs presented at the MSFC SRB baseline reviews on 18 April 1974 (reference

TWR-10059).

A more recent analysis of the shortened attach segment design indicates

that the additional stiffener will not be required for cavity collapse. Thus, the case

designs presented in this final report for Configurations 1 and 1-1 incorporate the

shortened attach segment without the additional stiffener.

In addition to the requirement changes that directly affected the case

structural design, the following items were introduced as design requirements:

1. Two percent inert weight allowance

2. G* constraint

3. Nozzle exit cone cutoff device

4. MSFC nozzle safety factor interpretation

5. Use of conventional plastic materials in nozzle

The two percent inert weight allowance requested by MSFC was considered

in this study as an increasein the total.inert weight of the SRM. The two percent

penalty applied to the total calculated inert weight, in turn, required the addition of

more propellant based on the specified SRB inert weight partials. The inert weight

added in this manner was assumed to have no unit cost. However, since the motor

was increased in size to accommodate the burden of two percent additional inert

weight, all the component costs are correspondingly higher.

An upper limit was established for the flow parameter G* (mass flow per

unit area) in order to prevent erosive burning from affecting the ballistics of motor

designs generated during the interim contract period. In a meeting on 6 March 1974

with MSFC representatives, a maximum value of 3.1 lbm/sec-in.2 at 90 0 F was the

set for G*. This is the maximum value developed in a Titan III booster without the

motor experiencing an abnormal pressure rise at ignition. The effect of this limit

was to restrain the cross sectional loading of propellant in a 146-inch diameter
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case. As a result, when this limit was reached during a design iteration if more

propellant had to be added, the port area and the motor length had to be increased.

Analysis of the water impact loads concluded that the loads can be signifi-

cantly reduced if the nozzle exit cone is cut off. As a result, it was recommended

that the nozzle exit cone be cut off just aft of the compliance ring and jettisoned

before water impact. The current estimate is that this cutoff device will weigh

approximately 50 lbm.

Designs generated during this study incorporated the use of MSFC interpre-

tation of safety factors for determining the required thickness of nozzle plastic

parts. By using the MSFC interpretation for determining nozzle safetyfactors, the

weight of the nozzle for Configuration 1 increased about 5 percent.

Another change in the nozzle was the use of conventional plastic materials in

place of the low-cost materials selected for the baseline design. Due to the difference

in thickness and density of these materials the nozzle weight increased about 6. 4 percent.

The design philosophy was to configure a nozzle based on low-cost plastic materials

but include the cost of conventional materials as an increment to the SRM program

cost. This approach was selected to provide an SRM with performance capable of

performing the intended mission even if the higher weight, high-cost nozzle materials

are used. If the low-cost nozzle ablative materials are used (as intended), some

performance margin will exist. The nozzle metal parts will be designed to

accommodate either the high-cost or low-cost materials.

The basic design and performance data for the three configurations are

presented in the following preliminary design documents.

3.1.1 Preliminary Design Data for Space Shuttle SRM Configuration 1
Model TU772/40A

3.1.1.1 Basic Motor Description

The Solid Rocket Motor (SRM) presented in this document has a steel case of

D6AC material with a wall thickness of 0. 488 inch iri the cylindrical segments. The

motor is nominally 146 inches in diameter with a slightly larger dimension over the
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external joint structure. The boss-to- exit -motor length is 1,468. 5 inches, and the

case boss-to-boss length is 1,352 inches. The case is comprised of 11 pieces;

a forward closure, six common 156-inch segments, an 86-inch attach segment,

two 114-inch segments with stiffeners, and an aft closure.

The motor is divided into four casting segments; a forward segment with

igniter boss and a grain structure composed of an 11-point star configuration that

blends into a cylindrical bore section, two interchangeable cylindrical segments that

have tapered bore grain configurations, and an aft segment with a tapered bore.

The aft segment grain is cut back to accept a submerged flexible bearing nozzle

and incorporates the necessary nozzle mounting boss. The overall motor layout

is presented in figure 3-3.

Table III presents a summary of the principal motor dimensions. Table IV

presents a weight summary and center of gravity locations for the SRM before and

after firing.

The motor contains 1,072,300 lbm of propellant and is to operate at an

MEOP of 850 psig. Total burn time is approximately 124.4 seconds. Inhibiting

is used on some slot faces to achieve thrust shaping.

The nozzle has a 17. 8 percent throat submergence and is capable of being

moved 8 degrees in any direction. Expected nozzle driving rate is 3 degrees per

second. Nozzle throat diameter is 56.6 inches, and the initial expansion ratio is

6. 0 to 1. The pivot point is located aft of the nozzle throat. The exit cone is of

the contoured type with initial and final angles of 23. 6 and 13. 8 degrees, respectively.

Table V summarizes the pertinent nozzle design data.

3.1.1.2 Performance

The following list of performance parameters apply to this motor design.

Average Stagnation Pressure (psia) 530

MEOP (psig) 850

Web Burn Time (sec) 1-14.5

Average Vacuum Thrust (lbf) (total time) 2,230,000

Vacuum Specific Impulse (lbf-sec/lbm) 258. 9
(at average expansion ratio of 5. 82:1)
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TABLE III

SUMMARY OF MOTOR DIMENSIONS
(CONFIGURATION 1)

Dimension Description Value (in.)

Aft Segment 372.0

Cylindrical Segment (2 required) 312. 0

Forward Segment 356.0

Assembled Case 1,352.0

Forward Dome-to-Nozzle Exit 1,468.5

Total Nozzle 165.5

Nozzle Flange-to-Exit 116.5

Nozzle Throat Diameter 56.6
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TABLE IV

WEIGHT AND CENTER OF GRAVITY SUMMARY
(CONFIGURATION 1)

Fwd Cylindrical Segment Aft
Item Segment (Ib) (2 required) (Ib) Segment (lb) Total (lb) X (in.)*

Case 25,215 21,303 28,372 96,193

Insulation, Liner, and
Inhibitor 4, 901 1,632 5,563 13, 728

Raceway 60 58 58 234

Propellant 288,637 259,417 264,829 1,072,300

Subtotal 318, 813 282,410 264,822 1,182,455

Nozzle 20,578

Igniter 649

Attach Provisions 190

Contingency 2,631

Total Inerts 134,203

Total Motor (Prelaunch) 1,206,503 1,162.6

Expended Inerts 4,488

Total Motor (Burnout) 129,715 1,274.9

Propellant Mass Fraction 0. 889

*CG reference plane is 493. 7 inches forward of forward dome igniter flange



TABLE V

NOZZLE CHARACTERISTICS AND DESIGN CRITERIA

(CONFIGURATION 1)

Throat Diameter, initial (in.) 56.6

Throat Area, initial (in. 2) 2,516

Exit Diameter, initial (in.) 138.64

Exit Area, initial (in. 2) 15,096

Expansion Ratio, initial 6 to 1

Exit Cone, contoured

Initial Angle (deg) 23.6

Exit Angle (deg) 13.8

Submergence (%)* 17.8

Pressure, average web (psia) 530

MEOP (psig) 850

Safety Factors

Ablatives 2. 0 on erosion
+1. 25 x char

Thermal Protection 1.0

Structure 1.4

Nozzle Weight (lb) 20,578

Length, throat-to-exit (in.) 141.5

Length/Throat Radius (initial) 5

Length, Throat-to-Flange
Length, Throat-to-Exit
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Burning Rate at 1, 000 psia (in. /sec) 0.408

Total Vacuum Impulse (million lbf-sec) 277.62

Initial Expansion Ratio 6. 0:1

Figure 3-4 presents the thrust-time history for this motor.

3.1.2 Preliminary Design Data for Space Shuttle SRM Configuration 1-1

Model TU772/42C

3.1.2.1 Basic Motor Description

The solid rocket motor (SRM presented in this document has a steel case

of D6AC material with a wall thickness of 0.494 inch in the cylindrical segments.

The motor is nominally 146 inches in diameter with a slightly larger dimension over

the external joint structure. The boss-to-exit motor length is 1,496 inches, and the

case boss-to-boss length is 1,378 inches. The case is comprised of 11 pieces; a

forward closure, six common 156-inch segments, an 86-inch attach segment, two

127-inch segments with stiffeners, and an aft closure.

The motor is divided into four casting segments; a forward segment with

igniter boss and a grain structure composed of an 11-point star configuration that

blends into a cylindrical bore section. Two interchangeable cylindrical segments

in the center of the motor that have tapered bore grain configurations, and an aft

segment with a tapered bore. The aft segment grain is cut back to accept a sub-

merged flexible bearing nozzle and has the necessary nozzle mounting boss. The

overall motor layout is presented in figure 3-5.

Table VI presents a summary of the principal motor dimensions. Table VII

presents a weight summary and center of gravity locations for the SRM before and

after firing.

The motor contains 1,090,400 ibm of propellant and operates at an MEOP

of 861 psig. Total burn time is approximately 124.4 seconds. Inhibiting is used

on some slot faces to achieve thrust shaping.

The nozzle has a 17.6 percent throat submergence and is capable of being

moved 8 degrees in any direction. Expected nozzle driving rate is 3 degrees per

second. Nozzle throat diameter is 57.3 inches, and the initial expansion ratio is
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TABLE VI

SUMMARY OF MOTOR DIMENSIONS
(CONFIGURATION 1-1)

Dimension Description Value (in.)

Aft Segment 398.0

Cylindrical Segment (2 required) 312. 0

Forward Segment 356.0

Assembled Case 1,378.0

Forward Dome-to-Nozzle Exit 1,496. 0

Total Nozzle 167.2

Nozzle Flange-to- Exit 118.0

Nozzle Throat Diameter 57. 3
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TABLE VII

WEIGHT AND CENTER OF GRAVITY SUMMARY

(CONFIGURATION 1-1)

Fwd Cylindrical Segment Aft
Item Segment (1b) (2 required) (lb) Segment (lb) Total (lb) X (in.)*

Case 25,496 21,545 30,197 98,783

Insulation, Liner, and
Inhibitor 4,901 1,632 5,881 14,046

Raceway 60 58 64 240

Propellant 287,646 258,525 285,704 1,090,400

Subtotal 318,103 281,760 321,846 1,203,469

Nozzle 21,192

Igniter 649

Attach Provisions 190

Contingency 2,702

Total Inerts 137, 802

Total Motor (Prelaunch) 1,228,202 1,176.0

Expended Inerts 4,578

Total Motor (Burnout) 133,224

Propellant Mass Fraction 0.888 1,289.4

*CG reference plane is 493. 7 inches forward of forward dome igniter flange.



6. 0 to 1. The pivot point is located aft of the nozzle throat. The exit cone is of

the contoured type with initial and final angles of 23.6 and 13.8 degrees, respectively.

Table VIII summarizes the pertinent nozzle design data.

3.1.2.2 Performance

The following list of performance parameters apply to this motor design.

Average Stagnation Pressure (psia) - 526

MEOP (psig) 861

Web Burn Time (sec) 114.4

Average Vacuum Thrust (Ibf) (Total Time) 2,268,000

Vacuum Specific Impulse (bf-sec/lbm) 258.9
(at average expansion ratio of 5. 82)

Burning Rate at 1,000 psia (in./sec) 0.408

Total Vacuum Impulse (million lbf-sec) 282.31

Initial Expansion Ratio 6. 0:1

Figure 3-6 presents the thrust-time history for this motor.

3.1.3 Preliminary Design Data for Space Shuttle SRM Configuration 1-1A

Model TU772/42D

3.1.3.1 Basic Motor Description

The solid rocket motor (SRM) presented in this document has a steel case

of D6AC material with a wall thickness of 0.521 inch in the cylindrical segments.

The motor is nominally 146 inches in diameter with a slightly larger dimension

over the external joint structure. The boss-to-exit motor length is 1, 496 inches,

and the case boss-to-boss length is 1, 378 inches. The case is comprised of

11 pieces; a forward closure, six common 156-inch segments, an 86-inch attach

segment, two 127-inch segments with stiffeners, and an aft closure.

The motor is divided into four casting segments; a forward segment with

igniter boss and a grain structdre composed of a 9-point star configuration that

blends into a cylindrical bore section. Two interchangeable cylindrical segments

in the center of the motor that have tapered bore grain configurations, and an aft
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TABLE VIII

NOZZLE CHARACTERISTICS AND DESIGN CRITERIA

(CONFIGURATION 1-1)

Throat Diameter, initial (in.) 57.3

Throat Area, initial (in. ) 2,579

Exit Diameter, initial (in.) 140.34

Exit Area, initial (in. 2) 15,469

Expansion Ratio, initial 6 to 1

Exit Cone, contoured

Initial Angle (deg) 23.6

Exit Angle (deg) 13.8

Submergence (%)* 17.6

Pressure, average web (psia) 526

MEOP (psig) 861

Safety Factors

Ablatives 2. 0 on erosion
+ 1.25 x char

Thermal Protection 1. 0

Structure 1.4

Nozzle Weight (lb) 21,192

Length, throat-to-exit (in.) 143.2

Length/Throat Radius (initial) 5

*Submergence, Length, Throat-to- FlangeSubmergence, x 100
Length, Throat-to-Exit
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segment with a tapered bore. The aft segment grain is cut back to accept a sub-

merged flexible bearing nozzle and has the necessary nozzle mounting boss. The

overall motor layout is presented in figure 3-7.

Table IX presents a summary of the principal motor dimensions. Table X

presents a weight summary and center of gravity locations for the SRM before and

after firing.

The motor contains 1, 102, 000 lbm of propellant and operates at an MEOP

of 937 psig. Total burn time is approximately 122.2 seconds. Inhibiting is used

on some slot faces to achieve thrust shaping.

The nozzle has a 17.9 percent throat submergence and is capable of being

moved 8 degrees in any direction. Expected nozzle driving rate is 3 degrees per

second. Nozzle throat diameter is 54. 4 inches, and the initial expansion ratio is

7.16 to 1. The pivot point is located aft of the nozzle throat. The exit cone is of

the contoured type with initial and final angles of 24. 6 and 13. 25 degrees, respectively.

Table XI summarizes the pertinent nozzle design data.

3.1.3.2 Performance

The following list of performance parameters apply to this motor design.

Average Stagnation Pressure (psia) 764

MEOP (psig) 937

Web Burn Time (sec) 114.4

Average Vacuum Thrust (lbf) (Total Time) 2, 320,440

Vacuum Specific Impulse (lbf-sec/lbm) 262. 2
(at average expansion ratio of 6. 94)

Burning Rate at 1, 000 psia (in. /sec) 0. 3995

Total Vacuum Impulse (million lbf-sec) 288.94

Initial Expansion Ratio 7.16:1

Figure 3-8 presents the thrust-time history for this motor.
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TABLE IX

SUMMARY OF MOTOR DIMENSIONS
(CONFIGURATION 1-1A)

Dimension Description Value (in.)

Aft Segment 398.0

Cylindrical Segment (2 required) 312.0

Forward Segment 356.0

Assembled Case 1,378.0

Forward Dome-to-Nozzle Exit 1, 496.0

Total Nozzle length 167

Nozzle Flange-to-Exit 118.0

Nozzle Throat Diameter 54.43
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TABLE X

WEIGHT AND CENTER OF GRAVITY SUMMARY

(CONFIGURATION 1-1A)

Fwd Cylindrical Segment Aft
Item Segment (lb) (2 required) (lb) Segment (lb) Total (b) X in.)*

Case 26,769 22,643 32,925 104,980

Insulation, Liner, and 6,114 1,620 5,246 14, 600
Inhibitor

Raceway 60 58 64 240

Propellant 290,707 261,275 288,743 1,102,000

Subtotal 323,650 285,596 326,978 1,221,820

Nozzle 20, 892

Igniter 649

Attach Provisions 365

Contingency 2,834

Total Inerts 144, 560

Total Motor (Prelaunch) 1,246,560 1, 175.3

Expended Inerts 5, 006

Total Motor (Burnout) 139, 702 1,285.5

Propellant Mass Fraction 0.884

*CG reference plane is 493. 7 inches forward of forward dome igniter flange.



TABLE XI

NOZZLE CHARACTERISTICS AND DESIGN CRITERIA
(CONFIGURATION 1-1A)

Throat Diameter, initial (in.) 54.43

Throat Area, initial (in. 2) 2, 327

Exit Diameter, initial (in.) 145.65

Exit Area, initial (in. 2) 16, 661

Expansion Ratio, initial 7. 16 to 1

Exit Cone, contoured

Initial Angle (deg) 24.6

Exit Angle (deg) 13.25

Submergence (%) * 17.9

Pressure, average web (psia) 764

MEOP (psig) 937

Safety Factors

Ablatives 2. 0 on erosion
+1.25 x chat

Thermal Protection 1.0

Structure 1.4

Nozzle Weight (Ib) 20, 892

Length, throat-to-exit (in.) 143.7

Length/Throat Radius (initial) 5. 28

*Submergence, % Length, Throat-to-Flange
Length, Throat-to-Exit
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3.2 CASE AND STRUCTURAL ANALYSIS

Major changes in SRM structural loading affecting the case and nozzle

design, evolved subsequent to the RFP and during the interim contract. In

general these changes, due to water impact, ET attach, and pad loads, required

an increase in the structural capability of the case which increased the inert weight

of the SRM. NASA Report S & E-ASTN-ADL (73-68), "Updated Water Impact

Loads for the Space Shuttle Solid Rocket Booster (SRB), 4-11-73 Configuration,"

was provided to Thiokol at the initiation of the interim contract.

The following sections present a summary of the impact of the revised

loading conditions on the design of the basic case and nozzle. The effort described

is the work accomplished during the interim contract which was primarily in

support of performance studies. The analyses which were involved were general

in nature and were intended to assess the general impact of such design considerations

as water impact, ET attach, pad loads, and basic design philosophy. Analyses

such as detailed discontinuity and refined stress analyses were not performed due

to the transient nature of the designs involved.

3.2.1 Case

One of the principal areas of concern is the basic cylindrical wall of the

case and in particular the case wall thickness required to fulfill all design require-

ments. A technique is developed which establishes the minimum wall thickness

requirement of the case with consideration given to fracture toughness, crack

growth rates, proof test, flight test pressures cyclic life requirements, and

grit blast removal. The development of this procedure is outlined in the case

wall thickness section. It was determined under the terms of the RFP that fracture

mechanics (cyclic life) requirements are dominant over factor of safety requirements.

It should be pointed out that about a 3 percent overdesign is

required in the case wall due to the dominance of cyclic life requirements. If

certain RFP requirements are relaxed slightly, basic strength considerations will

dominate. Most notable of the rather severe RFP requirements is the requirement

for a subsequent proof test before each use at a pressure level 1.2 times the case MEOP.
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Configuration 1-1A does provide a cylindrical case thickness based on a safety

factor of 1.4 as agreed on with MSFC. Discussions are continuing to modify

structural design requirements so that cyclic life requirements do not dominate.

Typical designs of clevis joints for both forward and aft SRB skirt attachments

are presented. These designs are adequate to accommodate the current forward and

aft peaking loads. Fabrication considerations affecting the attachment design need

further investigation. An additional area of interest was the ET attach ring where a

change from the RFP attach concept resulted in the need for a redesign of the ring

cross section. A new design was developed and analyzed which bolts to the case on

two stub flanges which are 12 in. apart and are provided in a special attach segment

of the case. The most severe loading condition was found to occur during liftoff, and

the results of an analysis of this condition are presented.

A major area of concern is the effect of the water impact loads on the design.

The cavity collapse requirement is of particular importance, in that it creates a need

for two additional circumferential ring stiffeners in each of the two aft segments

(Configuration 1-1). No additional wall thickness (over the 0. 51 in. required for the

aft peaking loads)will be required according to preliminary indications from BOSOR

and subsequent supporting analysis on STAGS. A recommendation is made for further

support analysis on STAGS. The slapdown loads under the terms of the present

requirements (see figure 2-1) do not affect the case design as long as nominal case

wall thickness is above 0. 461 in. This value is based on one STAGS point extrapolated

by BOSOR results. We understand that NASA results based on several STAGS points

indicate that this value.can go as low as 0.41 in.

The requirements of cavity collapse are more severe than the requirements

of penetration, and, therefore, penetration does not affect the design.

The aft dome thickness requirement for external pressure is based on the

requirements of NASA TND-1510 per agreement between NASA and Thiokol. The

thickness requirement for the aft dome under the effects of internal pressure was

determined using the same technique as developed for the case wall, considering

the stress reduction for a hemisphere. In Configurations 0, 1, 1-1, and 1-1A, the internal
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pressure requirements were dominant over the external pressure requirements

which occur at maximum axial deceleration. Configuration 1-1 was then subjected

to a BOSOR analysis with all aft skirt cavity pressures acting and the resulting

factor of safety was 1. 25 (using a KDF of 0. 75). The only configuration verified

on BOSOR was Configuration 1-1; however, Configuration 1-1A will provide an even

greater safety factor due to its 8. 7 percent greater membrane thickness.

The nozzle was also evaluated under the effects of maximum axial accelera-

tion (2 max), and maximum pitch (U"max). The 2 maximum condition had very

little significance to the nozzle, and Configuration 1-1 was found to be adequate for

maximum pitch when the uncharred ablative material was included in the analysis.

The stress analysis of the nozzle shell for the 0 maximum condition shows factors

of safety less than 1. 25 but does not include the ablative material. It remains for

future effort to evaluate the effect of ablatives on the nozzle stress levels during

the 8 maximum sequence.

The aft cylindrical segment of the case must be increased in thickness to

accommodate the aft peaking loads. It is ultimately shown by NASTRAN computer

analysis that a final nominal thickness of 0. 51 in. is adequate to sustain these

loads and exhibit a factor of safety over the required value of 1. 4. The results of

the analysis are presented.

The forward peaking loads are not critical, and it is shown from simplified

conservative analysis techniques that they are not deleterious to the design.

3.2. 1. 1 Case Wall Thickness Calculation

The basic case wall thickness requirement is determined from the complex

interaction of internal pressure, fracture mechanics, and grit blast considerations.

During the interim contract period, a procedure was developed to determine the

case wall thickness requirements on the basis of stress-time history as related

to flaw growth and the successive removal of material due to grit blasting during

the refurbishment process. In conjunction with this effort, a further review of

Minuteman grit blast experience was conducted and applied to all designs included

in this effort. A summary of the results of each phase of the effort follows.
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3.2.1.2 Grit Blast

In 1971 a detailed study of three reclaimed Minuteman, Stage I, motor cases

was conducted. The material was D6AC steel. One-two mils of epoxy-polyamid

avcoat primer was removed from the outside surface and a grip clad vinyl primer

from the inside with 100-200 grit zircronium silicate abrasive. Six hundred and

seventy-six individual points were measured on each of the three cases before

and after grit blast with the following results:

Decrease in Total Wall
Case Thickness (Average 676 Points)

1 0. 00055 in.

2 0.00028 in.

3 0. 00061 in.

Average Removal 0. 00048 in. (2 sides)

Average Removal Per Side, Per Use = 0.00024 in.

or-for 20 uses (19 removal processes) the total material removed is

19 (0. 0048) = 0. 0091 in. /19 reuses

This value was used in all basic wall sizing work for this effort.

3.2. 1.3 Analytical Procedure

The general procedure for determining case wall thickness requirements

is based on standard principles of linear fracture mechanics as they interact with

the case stress-time history.

The essence of the approach is as follows:

1. Establish the maximum depth flaw which can exist

in the case by an initial high level proof test.

2. Allow this initial crack to grow through the effects

of a specified number of use cycles consisting of:

a. One flight at MEOP

b. One grit blast

c. One proof test at a pressure higher than

MEOP
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Both time dependent h and cycle da/dn flaw growth are considered in the

analysis as well as the increase instress levels for each subsequent cycle due to

the loss from grit blast.

3. The wall thickness requirements to complete

N cycles are iteratively determined

4. The output of the program includes such useful

information as:

a. Initial factor of safety

b. Final factor of safety (after grit blasts)

c. Critical flaw size

d. Initial wall thickness requirements

e. Final wall thickness requirements

f. Pressure level of initial proof

The program input and mathematical development are as follows; all the

input constants listed are those which were used in the development of figure 3-9

which shows thickness as a function of internal case pressure.

INPUT DATA

Given:

KIC - Plant Strain Fracture Toughness = 90, 000 psi

da Cyclic Crack Growth Rate = 1. 32 x 10 - 16 (Ki)2. 48 in. /cycle
dn i

a = Time Dependent Crack Growth Rate = 5. 833 x 10-8 in. /sec

P = Internal Case Pressure, MEOP (psi)

<P = Proof Factor = 1.2

At = Thickness Removed Per Use = 0.0048 in./use

N = Number of Uses = 40

T 2  = Time at Proof Pressure Sec (120 sec)

T 1  = Time at Service Sec (100 sec)

R = Radius of Case (73 in.)

F. S. = Initial Factor of Safety (1. 4)
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WALL THICKNESS VS PRESSURE

0.520 -s IN./SEC 65.0
a =6 X 10 IN./SEC
PROOF FAC = 1. 2
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120 SEC PROOF
100 SEC FLIGHT '_

0.500 63.0
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nZ 0.490 CASE OD 146 IN. 62.0
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Figure 3-9. Weight Versus Pressure



INPUT DATA (Cont)

Given:

FTU Ultimate Strength (195, 000 psi)

0ip = Initial Proof Stress = 180, 000 psi

S= Number of Cycles Where At is Removed (19)

FRACTURE MECHANICS
ANALYTICAL APPROACH TO CALCULATING

PROCEDURE WALL THICKNESS INCLUDING
GRIT BLAST REMOVAL EFFECTS

CALCULATE (Pressure) + (Grit Blast) Going to Grit Blast)

PR
t - (F.S.) + At times
o FTU

2 Max Flaw Depth to Survive Initial Proof

KC <= Constant in Problem, No Matter What
a-

o 1.2 2 the Wall Thickness Requirements We Can
lp Proof Test to aip - The initial Will Drop

Out Later

- INTEGRATE CRACK GROWTH

ci odd i even

r.N M
da • da

o a a.= a +aT1  + d 2
i= i=l {We K. 9K.

M = 2N (Each Use is a Two Event Sequence

I Where:

=1 K. =1.1 r + Aa )< Stress Intensity

i  previous a Function of
1 Whthe Instantaneous

Where: Crack Depth and
t. = t - f (i) At the Existing
1 o Wall Thickness
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Where: When i 1=

f (i) = (i/2 - 1/2) f(i) 0

iodd =  or i/2 0 ievenf (i)-f(i-1)

f (i)= 5 Wall Thickness Will Decrease

For - i/2 ! 0 After Each Use Before Proof
Test Until t Uses Are Reached
and Then Remain Constant

a =a + Aan
n o

2

COMPUTE a = 2

crn (1. t M

COMPARE

if a < acr - Proceed Using Current
n n t as Minimum Wall Thickness

a
if a > cr

n n

to + 0. 001 = to (new thickness for next iteration)

3.2. 1.4 Skirt Attachment Joints

Figures 3-10 and 3-11 (Sketches SK50183 and SK50184) are conceptual drawings of

clevis type attachment mechanisms for the forward and aft SRM skirts, respectively.

The sketches have been "rough sized" to accept the peaking loads as presented

in S & E-ASTN-AS (74-15). See figure 2-1 . Enough analysis has been completed

to insure the utility of the basic concept; however, far more detailed analysis will

be required as final designs evolve.

The forward joint concept (figure 3-10) incorporates a provision for a single

O-ring seal. The joint could also be protected externally.in the same manner that

the case joints will be protected. Very minimal clearance is required between the

female clevis and the dome due to the displacement characteristics of a 2:1 dome.
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6.677
DIST FROM TAN PT

180 PINS 3.50
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A = 72.506 (SEMI MAJOR AXIS)

B = 36. 252 (SEMI MINOR AXIS)

Figure 3-10. Clevis Type Attachment Mechanism for Forward Skirt (SK50183)
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The aft joint concept (figure 3-11) does not incorporate a seal as none is re-

quired. Adequate clearance is provided between the joint and the dome to accommodate

dome growth at limit pressure. It can be noted on figure 2-1 that the applied com-

pressive loads are much higher than the applied tensile loads, and, therefore, the

shear out and between hole tensile requirements of the joint are quite minimal.

The same pin size and hole pattern is maintained as in the primary segment

joints. This will greatly facilitate case manufacturing processes and will also

help in assembly through the use of three slotted holes.

The kick ring and skirt outline shown on the aft concept are merely schematic

and can be altered to accommodate alternate skirt-actuator requirements.

Both forward and aft skirt lengths are shown as 3.5 inches. This is the

maximum skirt length which can be provided based upon fore and aft dome forged

preform constraints. This study indicates that this length is adequate to effect a

workable, clevis type connection on both skirts.
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3.2.1.5 Aft ET Attach Ring

On the basis of the RFP ET attach requirements TC developed an attach ring

design with a "T" cross section. Subsequent changes in the strut support pattern

and load magnitudes tended to make the "T" ring concept less attractive. A free ring

analysis performed with the new loads indicated excessive tensile stress on the

inside surface. A two flange design was also evaluated.

Two conditions were initially identified as the most severe: Liftoff and hi

"Q" boost.

A free ring analysis was conducted on the design in order to determine the

point of maximum stress. A shell supported ring analysis was conducted at this

point.

Figure 3-8 is a summary of the shell supported ring analysis as well as a

description of the basic geometry involved. The table summarizes all applied

loads involved in the analysis as well as the resulting strut loads.

The maximum strut load (P 2 ) was calculated to be 237, 000 pounds occurring

during the liftoff event. The maximum stress in the ring (02) was determined to be

-91, 200 psi on the OD surface of the ring.

No compliance requirements have been defined, so various approximate

stiffness parameters were calculated and are listed on figure 3-12. Included are

the radial displacement R2 (2 denotes under load P 2 ), the radial spring constant

(KR) and an approximate natural frequency fn range for the loaded motor supported

at the aft attach ring.

An internal pressure discontinuity stress analysis (figure 3-13) was conducted

to determine the state of combined stress. The maximum inside surface stress at

the center of the ring is 90, 500 psi. This must be combined with a 17, 200 psi inside

surface stress due to ring bending for a total stress of 107, 200 psi.

To verify these preliminary results a BOSOR analysis was conducted. The

analysis considered the combined effects of internal pressure and externally

applied loads. The design used in the analysis was Configuration 1-1 which has an

internal MEOP of 861 psig.
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DESIGN PER S & E-ASTN-ASR (74-19)
ENCLOSURE1

3.0 .-  T025 TYP LOAD - GEOMETRY - STIFFNESS
DOUBLE PLATE RT HAND SRB LOOKING FWD
OVER 100 AEC

1.25- 8.0 0.125 TYP 3

FINAL TYP F
NOMINAL -- 10

0.486 0.6 0.25 TYP 114 IN.

2.0 6.0 -- 12.0 - IZZ= 113 IN.4

TYP TYP 2
TTA = 18.28 IN.

SCAR WT = 431 LB
RESULTS OF EXTERNAL LOADS ANALYSIS RING WT = 692 LB

(INTERNAL PRESSURE EFFECT NOT INCLUDED) R = 73.82 IN.
R (ATTACH)* 78 IN.

SHELL-SUPPORTED RING; K = 0.57E (SKIN RESISTANCE)
REF: NASA TN-929 d 2, 000 (REL STIFFNESS)

LIFTOFF HIGH "Q" BOOST LIFTOFF HIGH'Q"BOOST

F8 20, 000 LB 206, 000 LB P3  -20, 865 LB -214, 900 LB

F10  -72, 500 LB -88, 000 LB 02 91, 200 PSI <LIFTOFF

M2  23.4 X 106 IN.-LB 11.2 X 106 IN.-LB AR2  + 0.068 IN.

P1 171,040 LB 75,160 LB KR 0.37 X 106 LBIIN. <LIFTOFF

P2 -237, 600 LB -102, 000 LB fN 6-12 HZ (LOADED)

Figure 3-12. Aft Attach Ring Frame Analysis (Configuration 1-1)



(NO EXTERNAL LOADS)
P = 849 PSIG
T = 3.161 X 106 LB

REF: S & E - ASTN - ASR (74-19)
ENCLOSURE 1 0.25 IN.

0 R = -2,760 PSI
I e = 61,260 PSI

M = 4 IN.-LB/IN.

Q = 153 LB/IN.

8.6.0 ININ(BASIC CYL) 8.0 0.125 IN.

oz = 48, 885 PSIS48,6.0 1 N. R = -8,440 PSI
e= 127,090PSI 15 PSI O = 74,360PSI

0./ 2.04861 N. 0 IN 0.61N. IN4 M = 4IN-BIN.

23, 760 LB/IN. (NOM) Q = 863 LB/IN.
' PLANE OF SYM

73.0 I N. PSi o= 42, 800 PSI o 65, 600 PSI

Os= 112, 100 PSI G = 105, 775 PSI O= 96, 000 PSI o 46, 200 PSI

M = -193 INLB/IN. M = 197 IN.-LB/IN. M = 1,564 IN.-LB/ 8= 90,500
Q = 190LB/IN. IN. M = 401 IN.-LBIIN.

Q = 550 LB/IIN. Q = 0

Figure 3-13. Aft Attach Ring Results of Discontinuity Analysis (Configuration 1-1)



The liftoff strut loads shown in figure 3-12 were applied to the ring. The result-

ing case wall inside and outside combined hoop stresses are shown in figure 3-14; the

maximum values being 87, 200 psi and 89, 000 psi, respectively. The resulting

margin of safety is 2. 19 (case wall).

Figure 3-15 is a plot of the stress distribution along a meridian which intersects

the strut load point P 2 (See figure 3-12). It is on this meridian that the' maximum stress

levels were observed. The stresses shown are for a combined condition of liftoff

strut loads and 861 psig (MEOP) internal pressure. The maximum stress level

shown is 132, 000 psi which gives the required 1. 4 factor of safety.

This indicates that the wall thickness taper as described in figure 3-12 is

adequate to dampen out discontinuity stresses in the case wall.

An additional loading requirement was introduced during the interim contract

period. The condition existed during partial fueling of the ET tank where thermal

shrinkage loads are combined with one day wind loads. The maximum strut load

during liftoff (237, 000 lb) is sufficiently greater than the partial fueling condition;

therefore, the partial fueling condition is not a factor in the design.

In summary, the ET ring design as shown in figure 3-12 appears adequate to

react the specified design loads as shown in figure 2-1.

3. 2. 1.6 Water Impact

The SRM case and nozzle have been analyzed and designed for various

configurations and loads during the contract period. Trends have also been

established for various design parameters such as wall thickness, stiffener sizes,

stiffener spacing, etc. The results are shown under each individual load condition.

A summary of the final analysis results for these water impact events is

shown in Table XII.

The two main configurations investigated were Configuration 0 and Configura-

tion 1-1. Configuration 0 is not adequate for the latest cavity collapse loads nor the
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Figure 3-14. ET Attach Ring - Liftoff Condition Plus 861 psi Internal Pressure (Configuration 1-1)
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140 COMBINED LOADING CONDITIONS
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Figure 3-15. Combined Stress Distribution in SRM Case on the Meridian
Containing Strut Load "P 2'" (Configuration 1-1)



TABLE XII

SRM BUCKLING SUMMARY - WATER IMPACT LOADS

Component Configuration Load Analysis Eigenvalue KDF FS

Case Cylinder Conf. 0 Slapdown-V v = 100, VH = 45, STAGS-Nonlinear -- -- 1.31
0 = 50

BOSOR-Indic 4 1.83 0.717 1.31

Conf. 1-1 -same- STAGS-Nonlinear -- -- 1.50
(extrapolated)

Conf. 1-1 Cavity Collapse-V v = 100, BOSOR-Indic 1 1.38 0.75 1.03
VH =30, 0 = 5

Conf. 1-1A Cavity Collapse-Vv= 100, STAGS-Nonlinear -- -- 1.94*

(IST = 1.59 , VH = 30, 8 = 50

t = 0. 51)

Conf. 0 Cavity Collapse-Old Loads- BOSOR-Indic 1 0.52 0.75 0.39
Pmax = 135

Conf. 0 Penetration-Vv = 100, VH = 0 BOSOR-Indic 1 4.19 0.75 3.14
0 = 0*

Case Aft Dome Conf. 0 Max. Axial Acec. -P = 253 psi BOSOR-Indic 1 1. 60 '0. 75 1.20
(t = 0. 274)

Conf. 1-1 -same- BOSOR-Indic 1 1.67 0.75 1.25
(t = 0. 279)

Nozzle Conf. 0 Max. Axial Acc. -Vv = 100 BOSOR-Indic 1 7.55 0.75 5.66

VH =0, 0 = 100

Conf. 0 Max. Pitch Acc. -Vv = 100, BOSOR-Indic 4 5.92 0.50 2.96
(with abla- VH = 4 5, 0 = 00
tives)

*This nonlinear analysis has not been completed to date. A value higher than this will be attained as shown on figure 3-16.
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Figure 3-16. SRB Cavity Collapse Stags Analysis Results
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maximum pitch acceleration loads on the nozzle. STAGS calculations were used to

assess effects of cavity collapse loads on the aft two segments of Configuration 1-1A.

Indications are that the wall thickness (0.51 in.) is-adequate.

At the point in the program where consideration of Configuration 1-1A was

initiated, it was mutually agreed by Thiokol and MSFC that performance studies

would be based upon the basic design shown in TUL 13936. In order to withstand

current cavity collapse loads and pad loads it was anticipated that the aft cylindrical

segment would require a wall thickness of 0. 56 in. and two ring stiffeners of

I = 7. 7 in. 4 and A = 3. 50 in. 2. (See Table X, Run No. 42.) The next to last cylindri-

cal segment would require a wall thickness required for motor operating pressure

only and would have provisions for external ring attachment but would use no actual

rings. From a weight-performance standpoint this initial assumption proved to be

conservative, however, subsequent structural analysis indicated that some modifi-

cation would be necessary in order to make Configuration 1-1A adequate for cavity

collapse loads.

The latest assessment for a design which will endure cavity collapse consists

of two aft segments with a final nominal wall thickness of 0. 51 in. with two stiffening

rings in each segment located at the third points. The new rings have an I of 1.59 in. 4

and an area of 1. 26 in. 2. The new configuration actually results in an overall weight

savings over the initial assumption.

During a 20 February meeting between MSFC and Thiokol, several water

impact conditions were identified by MSFC as being critical for the SRM design.

These conditions are listed in the 14 February columm of figure 2-1. It was

further agreed that Thiokol would evaluate these conditions using the BOSOR

computer program, applying a .knockdown factor "KDF" of 0. 5 to all nonaxisymmetric

loading results and a KDF of 0. 75 to symmetric loads such as occur during

penetration.

The analysis was conducted and a summary presentation of the design trends

was given to NASA. The main thrust of the presentation was that an estimated

weight of 23, 670 pounds would have to be added to the Configuration 0 structure in
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order to provide a structurally acceptable design. In addition, an estimated

1,900 pounds wouldbe required to accommodate grit blasting. It was apparent

that the primary reason for the large added weight requirement was the conservative

nature of the BOSOR program with the agreed on KDF. The most expeditious

solution to the problem appeared to be to analyze the SRM with a nonlinear analysis

technique such as STAGS.

A second reason for the weight increase was a rather significant change in

water impact loads from the time of the RFP. These loads were reviewed by NASA

and some changes were made; principally in the area of the entry angle of the slap-

down condition which was changed from -100 to -5' .

The results of the STAGS analysis did substantiate the conservative nature

of the BOSOR-KDF approach. The minimum KDF for the slapdown condition was

determined to be 0. 717 instead of 0.5 as assumed. The net effect of this analysis

was to determine the minimum wall thickness required for slapdown to be at least

0.461. Additional STAGS work by NASA indicates that it may be as low as 0.41.

Since 0. 461 is under the wall required for internal pressure no additional weight

was required for slapdown.

Cavity collapse loads for Configuration 0 could be accommodated by the

addition of a stiffener ring at the midjoint of the aft segment. The addition of this

stiffener ring also made the case adequate for penetration.

When new cavity collapse loads were developed, the design was no longer

suitable. Additional performance requirements along with the new cavity collapse

loads and fabrication limitations created a need for two aft segments with two

stiffening rings in each segment at the 1/3 points. It was estimated a 0. 51 inch (final

nominal) thickness would be required in the aft segments to accommodate cavity

collapse and aft peaking loads. Further analysis indicated that 0.51 inch was adequate

for the aft peaking loads and the cavity collapse condition.
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The BOSOR results for the slapdown loads were confirmed by two STAGS runs.

The STAGS results gave a KDF of 0.717 for a thickness of 0.496 inch . The KDF

increases for lower thicknesses (highter R/t ratios). For a thickness. of 0.466 inch

the KDF is 0.767. However, all final designs will require verification with a STAGS

nonlinear analysis.

The revised cavity collapse loads are much more severe than the old loads. The

slapdown loads at 0 = 100 were more severe than the old slapdown loads, and the

0 = 50 loads are very close to the old loads. The penetration loads are slightly more

critical than the old loads.

All nozzle loads are much higher than the RFP loads (by a factor of about 10)

and, in general, the water impact design loads for the nozzle are more severe than the

internal pressure and actuator loads.
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3.2.1.7 Slapdown

Slapdown conditions were originally modeled on BOSOR 4. This analysis

of Configuration 0 at 8 = -100 revealed an unsatisfactory safety factor (0. 95 for

KDF = 0. 717). Subsequent stiffening of the segments of the SRM indicated than an

adequate factor of safety could be attained with a small sacrifice in weight.

To obtain a factor of safety of 1.25 with a KDF of 0. 717 either the wall thick-

ness must increase or the spacing between stiffeners must decrease. The minimum

wall thickness required for a spacing of 156 inches is 0. 501 inch. (See figure 3-17.)

This is a weight increase of 709 pounds per segment. The moment of inertia of the

joint required for a wall thickness of 0.466 inch and a spacing of 156 inches is

approximately 3. 8 in.4 as shown in figure 3-18. This increases the weight per joint

273 pounds.

Additional analysis was carried out on the model for a 0 of -5o as updated by

NASA. This condition reduced the severity of the slapdown loads considerably and,

as may be noted in figure 3-19, Configuration 0 had a conservative factor of safety of

1.31. Configuration 1-1 has a factor of safety of 1.'50 by extrapolating the STAGS

analysis in relation to the BOSOR analysis. Figure 3-20 displays the complete STAGS

analysis results. Table XIII is a summary of the BOSOR results for various

configurations investigated.

3.2.1.8 Cavity Collapse

A summary of the case configurations with the factors of safety for the cavity

collapse loads is shown in figure 3-21. Figure 3-22 shows the effect of varying the

moment of inertia of the stiffeners in the aft segment with the original cavity col-
4

lapse loads. This curve shows an optimum stiffener inertia of 0. 58 to 0. 60 in..

The eigenvalue drops off very rapidly for a smaller inertia and remains constant

for a larger inertia. The optimum stiffener inertia must be sufficient to force the

buckling mode in the shell between stiffeners. Once this is accomplished, increasing

the stiffener size has no effect.

The revised cavity collapse loads have a higher peak pressure, are higher

on the case, and are generally spread over a longer length of the case. Either double

stiffeners, a thicker wall, or a combination of the two is required to withstand the
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Figure 3-17. Slapdown Results, t = 0.486
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Figure 3-18. SRM Case Buckling Parameters (Slapdown 0 = -100)
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Figure 3-19. BOSOR Slapdown Results
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Figure 3-20. SRB Slapdown - STAG Analysis Results
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TABLE XIII

SLAPDOWN BOSOR SUMMARY SHEET

Type**
Run t L _ Ist

t  
N E FS* Load*** Problem Comments

1 0.466 156 2.155 -- 3 1.321 0.95 1 4
2 0.466 156 4.310 -- 3 2.034 1.46 1 4 Did Not Reach Minimum Eigenvalue

3 0.466 156 6.470 -- 7 2.016 1.45 1 4
4 0.466 156 10.0 -- 7 2.225 1.60 1 4
5 0.466 156 2.155 2.155 3 1.473 1.06 1 4 Maximum Load Over Stiffener

6 0.466 156 2.155 2.155 3 1.473 1.06 1 4 Maximum Load Between Stiffener and Joint

7 0.466 156 2.155 23.5 3 5.3 3.80 1 4 Maximum Load Over Stiffener
8 0.576 156 2.155 -- 3 1.918 1.38 1 4
9 0.530 117 2.155 -- 3 1.450 1.04 1 4

11 0.576 156 3.50 -- 3 2.402 1.72 1 4
12 0.466 156 25.0 -- 7 2.325 1.67 1 4
13 0.616 117 6.6 -- 3 4.293 3.08 1 4
14 0.576 117 5.0 -- 3 3.200 2.29 1 4
15 0.466 50 2.155 -- 3 1.764 1.26 1 4
16 0.576 90 5.00 -- 3 3.812 2.73 1 4
17 0.576 156 5.00 -- 7 3.126 2.24 1 4
18 0.616 156 6.6 -- 6 3.781 2.71 1 4
19 0.616 200 6.6 -- 6 2.934 2.10 1 4
20 0.576 117 2.155 -- 3 1.937 1.39 1 4
21 0.576 117 25.0 -- 7 4.43 3.18 1 4
22 0.526 156 3.50 -- 3 2.170 1.55 .1 4
23 0.466 117 2.155 -- 7 2.037 1.46 1 4
24 0.496 156 2.762 -- 3 2.334 1.67 2 4 0 =-5-
25 0.472 156 2.267 -- 3 1.912 1.37 2 4 0 =-5 °

26 0.488 156 2.566 -- 3 2.161 1.55 2 4 0 = -5 '

27 0.504 156 2.948 -- 3 2.491 1.79 2 4 0 =-5o
28 0.576 117 3.50 -- 3 2.588 1.86 1 4
29 0.576 156 3.50 -- 3 2.396 1.72 1 4 The Load is 20 In. Forward of Run 11
30 0.466 156 2.155 -- 3 1.972 1.41 2 4

*A knockdown factor of 0. 717 is used for all points.

**Type 4 = asymmetric loading, Type 1 or -1 = axisymmetric loading.

***Load 1 is for VV = 100 ft/sec, VH = 45 ft/sec, and 9 = -101, Load 2 is the same except 6 = - 5 '.
tJoint moment of inertia.

ttMoment of inertia of the stiffening rings.
N = number of buckling nodes
E = eigenvalue
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Figure 3-21. Cavity Collapse Summary
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new loads. An aft segment thickness of 0.510 inch was estimated to prevent buckling

due to the aft launch pad peaking loads, and, therefore, it was assumed this thick-

ness with two stiffeners in each segment would prevent cavity collapse buckling. The

BOSOR results (Indic = 1) show a FS of 1. 03 for this assumption (Configuration 1-1,

VV = 100, VH = 30, 0 = 50). The buckling pressure for a type 1 problem (axisym-

metric load) is lower than for a type 4 problem (asymmetric load) (See runs No. 23

and 34 on table X ). Therefore, the results are conservative for this type of loading.

An increase of 22 percent was shown on run 23 (type 4 problem) overrun 34 (type 1

problem). Applying the 22 percent for this run would give a factor of safety of

1. 03 (1. 22) = 1. 26. This was verified with a STAGS analysis as shown in figure 3-16.

Increasing the stiffener moment of inertia to 1. 59 increased the buckling pressure

above 194 percent of design load as shown on the STAGS nonlinear run.

A summary sheet showing the BOSOR runs made during the contract for the

cavity collapse load is shown in Table XIV.

3.2.1.9 Penetration

The penetration analysis was also performed on BOSOR. The loads during

penetration are much lower than the cavity collapse loads, and, therefore, do not

design the aft segments.

Configuration 0 with no stiffener in the aft segment gave an eigenvalue of

1.38 for a factor of safety of 1.03. The addition of one small stiffener in the center

of the aft segment increases the eigenvalue to 1.90 for a factor of safety of 1.43.

BOSOR gave an eigenvalue of 4.19 on Configuration 1-1 for a factor of safety

of 3.14. A summary of all the BOSOR runs on penetration models is shown in

Table XV.

3.2.1. 10 Aft Dome

The aft dome was analyzed on the basis of several references to determine

the effects of each on the delta case weight. A summary of the results is shown
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TABLE XIV

CAVITY COLLAPSE BOSOR SUMMARY SHEET

Type*

Run t I ljtt st
2  

N E FS
3  

Load
4  

Run Comments

1 0.466 156 2.155 -- 7 0.523 0.40 1 4 Configuration 0
2 0.466 156 2.155 0.900 10 0.955 0.72 1 4
3 0.466 156 2.155 5.000 10 0.963 0.72 1 4
4 0.466 156 2.155 19.000 10 0.965 0.72 1 4
5 0,466 100 2.155 -- I8 0.748 0.56 1 4
7 0.656 100 2.155 -- 5 1.45:3 1.09 1 4
8 0.466 100 2.155 11.400 12 1.624 1.22 1 4 Did Not Heach Minimum Eigenvalue

9 0.576 100 2. 155 5.030 11 2.644- 1.98 1 4
10 0.576 100 2.155 2.900 7 1.203 0.90 1 4
11 0.496 100 2.760 11.400 2 2.071 1.55 1 4
12 0.496 100 2.760 19.000 6 2.097 1.57 1 4
13 0.466 100 2.155 19.000 10 1.799 1.35 1 4
14 0.472 100 2. 267 11.400 9 2.260 1.70 1 4
15 0.472 100 2.267 7.200 9 2.255 1.69 1 .1
16 0.46G 100 2.155 8.000 10 1.975 1.48 1 4
17 0.486 110 2.155 -- S 0.756 0.57 1 .4
17A 0.486 110 2.155 0.580 11 1.523 1.14 1 4

17B 0.486 110 2. 155 1.270 11 1.540 1.16 1 4
18 0.476 110 2.155 1.270 11 1.471 1.10 1 4

19 0.496 110 2.155 0.580 11 1.593 1.19 1 4

20 0.506 110 2.155 0.580 11 1.675 1.26 1 4

20A 0.506 110 2.155 0.580 11 1.675 1.26 1 4 Stiffener in I.ast Segment Only

20B 0.506 110 2.155 0.580 8 1.616 1.21 1 4 All Segments Except Last 0.466 lTh
22 0.506 113 2.155 0.580 11 1.627 1.22 1 4
23 0.506 110 2.155 0.580 11 1.820 1.37 1 4 Short Model

'25 0.506 110 2.155 0.294 5 1.253 0.94 1 4
26 0.506 113 2.155 0.940 11 1.639 1.23 1 4
27 0.510 113 2.155 0.580 11 1.660 1.25 1 4
28 0.506 110 2.155 0.350 5 1.361 1.02 1 4
29 0.506 110 2.155 -- 8 0.831 0.62 1 4
30 0.500 107 2.155 0.580 11 1.687 1.27 1 4
31 0.490 103 2.155 0.580 11 1.663 1.25 1 4
32 0.500 107 2.854 0.580 11 1.696 1.27 1 4
33 0.516 118 2.155 0.580 10 1.619 1.21 1 4
34 0.506 110 2.155 0.580 11 1.486 1.11 1 1 Short Model
35 0.510 127 2.508 0.750 4 1.375 1.03 2 1 Short Model

2 Stiffeners in Each of Aft 2
Segments,

36 0.510 127 2.508 0.750 4 1.375 1.03 2 -1 Same as Run 35
37 0.560 127 2.508 0.750 4 1.479 1. 11 2 1 Short Model
38 0.600 127 2.508 0.750 4 1.564 1.17 2 1 Short Model
39 0.620 127 6.280 0.750 4 1.839 1.38 2 1 Short Model

40 0.510 127 2.508 0.580 4 1.348 1.01 3 -1 Short Model
41 0.510 127 2.508 0.750 4 1.417 1.06 2 -1 Same as Run 36 Except Different

Boundary Condition
42 0.560 127 3.750 7.700 7 1.439 1.08 3 -1 Second Seg = 0. 535, No Stiffeners

in 2nd Segment
43 0.560 127 3. 750 7. 700 4 4.261 3.20 2 -1 4 Stiffeners

44 0.560 127 3.750 5.460 4 4.435 3.33 2 -1
45 0.560 127 3.750 4.150 4 3.591 2.69 2 -1
46 0.560 127 3.750 1.590 4 2.285 1.71 2 -1
47 0.560 127 3.750 2.900 4 3.114 2.34 2 -1
48 0.560 127 3.750 7.700 11 3.190 2.39 3 -1 2nd Segment t - 0.535, 4 Stiffeners
49 0.560 108 3.750 7. 700 3 4.239 3.18 3 -1 100 Inch Attach Segment
50 0.560 127 3.750 0.580 4 1.531 1.15 2 -1
51 0.560 127 3.750 0.0 7 0.658 0.49 2 -1
52 0.535 127 3.750 0.580 4 1.481 1.11 2 -1
53 0.535 127 3.750 2.900 4 2.995 2.25 2 -1
54 0.560 127 3.750 7.900 4 4.334 3.25 2 -1
55 0.535 127 3.750 1.590 4 2.210 1.66 2 -1
56 0.535 127 3.750 7.900 4 4.135 3.10 2 -1
57 0.510 127 3.150 1.590 4 2.090 1.57 2 -1

58 0.535 127 3.750 4.150 4 3.454 2.59 2 -1

59 0.510 127 3.150 1.590 4 2.776 2.08 2 -1 New Stiffener Configuration
60 0.510 127 3.150 0.750 5 0.771 0.58 2 -1 d for Joint and Stiffener = 0
61 0.510 127 2.259 1.590 3 2.732 2.05 3 -1 Corrected Joint Properties
62 0.510 127 2.259 1.590 4 2.674 2.01 2 -1

Notes:
1 Moment of inertia of the joint. 4 Load I = S & E-ASTN-ADL (73-68) Figure III-16, Vv = 100, VH = 0, 0 = 0 to 10 .
2 Moment of inertia of the stiffeners. Load 2 = S'& E-SRE (74-114) Figure 12, V = 100, VH = 30, 0 = 5*,
3 Factor of safety assuming a knockdown Load 3 = S & E-SRE (74-114) Figure 12, VV = 100, VH = 15, 0 

= 
5'.

factor of 0. 75. 5 Type 4: - is asymmetric loading.
Type 1 or -1 run is axisymmetric loading.
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TABLE XV

PENETRATION BOSOR SUMMARY SHEET

Run t 1 Ijt Ist N E FS Comments

1C 0.466 156 2.155 -- 7 1.379 1.03

1C-1 0.466 156 4.310 -- 7 1.474 1.11

10-2 0.466 156 6.465 -- 7 1.508 1.13

2 0.466 156 2.155 2.155 4 2.570 1.93

2A 0.466 156 2.155 1.078 4 2.394 1.80

2A-1 0.466 156 2.155 0.30 5 1.899 1.42
00
o 3 0.466 100 2.155 -- 8 2.778 2.08

10 - 0.506 100 2.155 -- 5 1.716 1.29

11. 0.510 113 2. 155 0.58 4 4.186 3.14 First 2 Segments 0. 510, 0.486 On Others

Notes:

All analysis was performed for a Type 1 (axisymmetric) loading. The loads are taken from S & E-ASTN-ADL

(73-68) Figures 111-19 and 111-201. The factor of safety is calculated assuming. a knockdown factor of 0. 75.



in figure 3-23. The NASA SP-8032 equation is based on all data available with no

consideration as far as boundary conditions, R/t, ratios, flaws, etc., and is con-

sidered much too conservative. The David Taylor Model Basin results from refer-

ence NASA TND-1510 are based on thick walled shells with R/t ratios similar to

those of the SRM aft closure. It is felt that the NASA TND-1510 results are more

correct for our application being based on correct R/t test results.

A composite model of the nozzle, closure, and into the cylindrical shell was

also run with the maximum axial acceleration loads for 0 = 50 . The eigenvalue for

BOSOR for a thickness of 0.279 inch is 1.67 and for a KDF of 0.75 the FS = 1.25.

The KDF of 0.75 correlates with the results of the David Taylor Model Basin work.

3.2.1.11 Nozzle

The nozzle analysis was also performed on BOSOR. It should be pointed out

that the actuators were not used to transfer any loads because BOSOR is not capable

of handling a problem containing loads applied at one point in these two directions. All

analyses were performed without the nozzle extension.

The static analysis results are shown in figures 3-24 and 3-25. The maxi-

mum stress is 185, 000 for the maximum pitch condition giving a minimum FS of

1.05. This is primarily a bending stress at the juncture in the nozzle throat area.

No ablatives were included in this analysis, and, therefore, the results are con-

servative. A slight increase in the local thickness (0.544 inch thick in the throat

area) will increase this FS to 1.25.

The maximum pitch acceleration buckling analysis included the ablative

materials as well as the structural materials of the nozzle. The char line for the

ablative material included is shown in figure 3-26. The maximum axial acceleration

buckling analysis showed the aft dome to be much more critical than the nozzle with

the ablatives included. The results are shown in Table XVI.

3.2.1.12 Aft Peaking Loads

The aft peaking load analysis was performed on NASTRAN. The loading

condition is for on-pad mode with orbiter engines ignited and a 34.4 knot wind, as
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Figure 3-23. Aft Dome Buckling Calculations Summary
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Figure 3-24. Nozzle Analysis (Max. Pitch, e = 0 Deg)
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RINGS HAVE NO LOADS
250.00

FL-IN. = -30, 300 PSI

200. 00 -FL-OUT = 37, 200 PSI
FHOOP-IN. = -22, 200 PSI
FHOOP-OUT = -916 PSI

150.00 -
FL-IN. = 13,400 PSI
FL-OUT = -2, 270 PSI FLEX BEARING
FHOOP-IN. = -8, 180 PSI
FHOOP-OUT = -12, 800 PSI TAN LINE

Z FL-IN. = -41, 000 PSI
100.00 - FL-OUT = 30, 100 PSI

FHOOP-IN. = 41,500 PSI

FL-IN. = -20, 000 PSI FHOOP-OUT = 17, 200 PSI

FL-OUT = 30, 500 PSI FL-IN. = -40, 000 PSI
FHOOP-IN. = -150 PSI FL-OUT = 29, 800 PSI

50.00 -FHOOP-OUT = 14, 900 PSI FHOOP-IN. = -29, 700 PSI
FHOOP-OUT = -11, 700 PSI

FL-IN. = -5, 150 PSI
FL-OUT = 8, 330 PSI FL-IN. = -74, 600 PSI
FHOOP-IN. = - 3, 650 PSI FL-OUT = 84, 300 PSI

0.0 -FHOOP-OUT = 435 PSI FHOOP-IN. = -39, 800 PSI
FHOOP-OUT = 4, 650 PSI

NOZZLE COMPLIANIE RING

-50.00
-100.00 -50.00 0.0 50.00 100.00 150.00 200.00

R

Figure 3-25. SRM Nozzle Buckling Analysis - Configuration 0
(Max. Axial Acc, e = -10 Deg - Initial Undeformed Structure)
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WATER IM PACT PRED IICTED

EROSION

SCHAR

Figure 3-26. Nozzle Showing Char Line



TABLE XVI

NOZZLE BUCKLING ANALYSIS

Load Condition Vv(FPS) VH(FPS) 8 (00) E KDF FS N Comments

Max. Axial Accel

Configuration 0 100 45 5 7. 86 0. 75 5. 90 4 No Ablatives

Max. Pitch Accel

Configuration 0 100 45 -10 2.49 0.5 1.244 14 No Ablatives

Configuration 1-1 100 45 -5 6.47 0.5 3.23 12 Ablatives Included

Configuration 1-1 100 45 0 5. 92 0. 5 2. 96 12 Ablatives Included



outlined in memo S & E-ASTN-AS (74-15), dated 7 Mar 1974. The loads were inte-

grated to determine the axial load and bending after the load becomes completely

distributed. The results are shown below.

M

NM  Np
7rD

P = 2 dpda = -1, 976, 000 lb
360

rD
M = E dp R cos a do 3- =307, 854, 000 in. -lb360

P M
N=N ±N P- -- -

N M 27rR r R

-1, 976, 000 307, 854, 000

27r(73.0) - 7r(73. 0)2

N = -22, 697 Ib/in.

The stress and critical stress in the basic shell (the attach segment and above) for

Configuration 1-1 is:

- = 0.6 YEL (NASA SP-8007)
cr R

Y = 1-0.73 (I-e ) (for bending)

16

Y=1-0.901 (1-e - ) (for axial load)
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cr = 61.990 psi (axial)

cr = 72, 886 psi (bending)

N
t

t = 0.484 in.

oA = 8, 901 psi (axial)

(TB = 37, 994 psi (bending)

FS = 1 =1.503
890 37,994

-+
61,990 72,886

This is very conservative since the weight of the aft segments will be sub-

tracted from these loads at the point where the thickness decreases to 0. 484 inch.

The ratio of the axial load to bending is:

R 18, 389 = 0. 81 (bending)
B 22, 697

RA = 1-0. 81 = 0.19

The load distribution in the aft 2 segments were determined from a NASTRAN

analysis. The model with the load distribution is shown in figure 3-27. Figure 3-28

shows the stress pattern with the peak stress forward of the aft joint shown as

53, 266 psi. The factor of safety at this location is shown below for Configuration 1-1.

t = 0. 510 in.

R = 72.759 in.

= 77, 658 (bending)
cr

a- = 66, 353 (axial)
cr

aA = 0.19 (53, 266) = 10, 120 psi (axial)
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MAXIMUM
COMPRESSION
32,600 LB/IN. (LIMIT)

AFT PEAKING
LOAD DISTRIBUTION

STUB SKIRT PER S & E - ASTN - AS (74-15)

SEGMENT Y-JOINT (TAN LINE)

JOINTS
AFT ATTACH
E. O. MODEL

FIXED BOUNDARY

UNDEFORMED SHAPE

Figure 3-27. SRM Case Aft Peaking Loads Analysis NASTRAN Model



MODEL MODEL MODEL MODEL

STA STA STA STA

334.0 243.5 12.4 0. 0

AFT ATTACH RING SEGMENT JOINT TAN LINE AFT SKIRT

t= 0.486 t= 0.505

E HOLD DOWN

FITTING

0

-5,000
10,000 

15,000

-10, 000 -5,000 10
5,000

-15,000

-20,000

-25,000

-70,000

-65,000

-30, 000 . -45,000 - --60,000

-35, 000 -50,000 -5, 000

MAX- STRESS
FOR BUCKLING

Figure 3-28. Stress Distribution (psi) - Aft Peaking Loads (53,266)

(Ref: S & E-ASTN-AS (74-15))



r = 0.81 (53, 266) = 43,145 (bending)

FS =  1 =1.41
10 120 43, 145

+
66,353 77, 658

3.2.1.13 Forward Peaking Loads

The SRM was analyzed for the forward peaking loads shown in S & E-ASTN-

AS (74-15). A summary of the results is shown in figure 3-29. The minimum

factor of safety for buckling is 1. 71 and the stress factor of safety in the pin joint

is 2.74.

Additional analysis is required around the "Y" joint to determine the discon-

tinuity stresses for the worst loading condition which has not been defined. This

will probably be at liftoff when the internal pressure is maximum. The peaking

loads at this time need to be defined, and the interface configuration between the case

and barrel section must be defined to conduct an adequate analysis in this area. The

internal pressure at the time of maximum acceleration (approximately 116 seconds)

is only 433 psi which is a far less critical condition than when the pressure is

maximum.
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N'MAX, ULT = 27, 100 LBIIN. (19,357 LBIIN. LIMIT)

* STABILITY (ASSUMING NO REDISTRIBUTION OF LOAD)

SKIRT CYLINDER

APPLIED STRESS -57, 600 PSI -39, 835 PSI
CRITICAL STRESS 1,360,000 PSI 68,000 PSI
F. S. 23. 6 1. 71
THICKNESS 0.336 IN. 0.486 IN.
LENGTH 3.0 IN. 156 IN.

. NO STABILITY PROBLEM ANT'CI PATED WITH FWD
PEAKING LOAD

* STRESS (LOAD COMPLETELY DISTRIBUTED MC; A

CLEVIS JOINT - TENSION DUE TO COMBINED EFFECT
PIN LOAD FROM PEAKING LOAD EFFECT = 6,255 LB

M = 84.7 X 106 IN-LB
N = -1.2 X 106 LB

PIN LOAD FROM PRESSURE = 50, 590 LB
t = 116 SEC
P = 540 PSI
TN = 2.61 X 106 LB

TOTAL PIN LOAD (MAX AXIAL COND) = 56, 845 LB
PROOF TEST PIN LOAD (1.2 X 849) = 94, 795 LB
MEOP = 850 PSIG
MINIMUM PIN FAILURE LOAD = 155,970 LB
F. S. = 2.74

.. NO STRESS PROBLEMS WITH FWD PEAKING LOAD

Figure 3-29. Effect of Forward Peaking Loads (Configuration 1-'1)
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3.3 NOZZLE

As various motor configurations have envolved due to requirement changes,

the SRM nozzle has also changed. Table XVII delineates some of the pertinent

nozzle information for nozzle Configurations 0, 1, and 1-1A. Figures 3-30, 3-31,

3-32, and 3-33 show these nozzles. Table XVIII is a summary of the actuation

torque predicted for Configurations 0, 1-1, and 1-1A. The paragraphs below discuss

the various changes and the applicable tradeoff studies that have been conducted in

conjunction with them.

3.3.1 Nozzle Material Selection

The Thiokol baseline design, Configuration 0, used low-cost materials for

the nozzle but was designed so that conventional (high-cost) materials could be

substituted directly to assure performance and schedule integrity should difficulty

arise with the low-cost materials. During the interim contract, this approach

has been modified slightly, and it is now planned to use high-cost materials in the

first demonstration motor (DM-1) and to develop the low-cost materials in time

for demonstration in DM-2. This concept will assure high reliability and initial

test success in DM-1 and will permit an additional five months for development of

the low-cost nozzle materials. Discussions have been held with NASA on the

low-cost materials proposed, the testing that Thiokol has done to date on these

materials, and on the plan and schedule for development and demonstration of

the materials.

Thiokol has also been participant in discussions between NASA and Aerotherm

concerning the contract under which Aerotherm will be developing thermodynamic

properties of the low-cost materials. This interface will help to assure that the

latest data will be used in the Thiokol design.

Configurations 1, 1-1, and 1-1A use the high-cost nozzle materials and conse-

quently represent the configuration of DM-1. It is expected that the low-cost

materials development program will reduce both the weight and the cost of the nozzle

on DM-2 as compared to DM-1.

Data on the low-cost materials and their use in the nozzle are presented below.
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TABLE XVII

NOZZLE SUMMARY DATA

Configuration
0 1 1-1 1-1A

Throat Diameter (in.) 56.4 56.6 57.3 54.4

Expansion Ratio (initial) 6:1 6:1 6:1 7.16:1

Submergence Depth of Throat (in.) 25.3 25.1 25.1 28.7

Submergence Ratio. (%) 20.0 19.9 17.5 20.0

Exit Plane Diameter (in.) 138.2 138.6 140.34 145.6

Lengths (in.)

Throat to Exit 126.2 141.5 143.24 143.70

Flange to Exit 100.9 116.4 118.14 118.0

Nose to Exit 149.2 164.8 166.60 167.0

Initial Contour Angle (deg) 23.6 23. 6 23. 6 24. 6

Turnback Angle (deg) 11.2 13.8 13.8 13.25

Length/Throat Radius 4.5 5.0 5.0 5.28

Cold Pivot Point Location (in.)* 39. 3 35. 36 35. 78 17. 60

Hot Pivot Point Location (in.)* 56.9 52.20 52.3 29.5

Nozzle Weight (lb) 16, 401 20, 578 21, 192 20, 892

Materials Low Cost -High Cost High Cost High Cost

Safety Factor Interpretation Thiokol NASA NASA NASA

*Inches aft of throat
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PITCH CARBON FIBER PHENOLIC
MOLDING COMPOUND

23.00 IN. 126.20 IN.

DIA RAYON CARBON FABRIC PHENOLIC
(STANDARD CARBON CLOTH)

PITCH CARBON FI BER MAT PHENOLIC/RAYON CARBON FABRIC PHENOLIC

PITCH CARBON FIBER MAT PHENOLIC TAPE

CANVAS CLOTH PHENOLIC
PITCH CARBON FIBER
MAT PHENOLI C TAPE LASS CLOTH EPOXY

CARBON FI BER FILLED SILl ICONE ELASTOMER

HIGH COST MATERIAL:

RAYON BASED CARBON
FABRIC PHENOLIC IN THROAT

LOW COST MATERIALS:

PITCH BASED CARBON PHENOLICS

CANVAS CLOTH PHENOLIC INSULATION

CARBON FILLED SILICONE RUBBER

Figure 3-30. Baseline Low Cost Nozzle - Configuration 0



COLD PIVOT
_ HOT PIVOT

35.36* - I
52.2

24.0
141.5 -TO EX IT ---

CARBON

CLOTHS A

PHENOLIC 56.6
DIA 116.3 -TO EXIT--------

S" 
76.0 -TO EXIT-

112. 50

SILICA CLOTH DIA FIELD JOINT SILICA CLOTH PHENOLIC
PHENOLIC

CARBON CLOTH PHENOLIC

CARBON FIBER FILLED EXIT CONE CUTOFF 138.6
SILICONE RUBBER DIA 141.6

*DIMENSIONS IN INCHES GLASSCLOTHEPOXY LDIA

Figure 3-31. SRM Nozzle - Configuration 1



COLD PIVOT
HOT PIVOT

35. 78 - j
52.3 -

------ 24.0
143.24 -TO EXIT-

CARBON

GLASS PHENOLIC CARBON CLOTH PHENOLIC
PHENOLIC 57.3

DIA * 118.05 -TO EXIT *

( "0 77.7 -TO EXIT-

112.50

SILICA CLOTH DIA FIELD JOINT SILICA CLOTH PHENOLIC
PHENOLIC

CARBON CLOTH PHENOLIC
:140.34

CARBON FIBER FILLED EXIT CONE CUTOFF DIA
SILICONE RUBBER 14325

GLASS CLOTH EPOXY DIA
*DIMENSIONS IN INCHES

Figure 3-32. SRM Nozzle - Configuration 1-1



143. 695
17. 60

CARBON CLOTH 54.43 = 7.16PHENOLIC DIA
103.00 LIRT= 5.28

DIA
GLASS CLOTH PHENOLIC

CARBON CLOTH PHENOLIC

SILICA CLOTH PHENOLIC 145.645
DIA

147. 645
118.TO IT GLASS CLOTH DIA

GLASS CLOTH
PHENOLIC CARBON FIBER FILLED EXIT CONE CUTOFF

SILICONE RUBBER LSC-500 + 100 GRIFT

SILICA CLOTH PHENOLIC 72.00

Figure 3-33. SRM Nozzle - Configuration 1-1A



TABLE XVIII

ACTUATOR TORQUE SUMMARY
(Million Inch Pounds)

Configuration 0 Configuration 1-1 Configuration 1-1A
In Plane of Actuator In Plane of Actuator In Plane of Actuator

(50 Vector) (50 Vector) (50 Vector)

1. Nominal Bearing Torque 2.35 3.007 2.404
2. SRM Misalignment Torque for 0.250 0.129 0.165 0.132
3. Torque Due to Bearing Aging (20%)* 0.470 0.601 0.481
4. Prediction Uncertainty in Bearing 0.235 0.301 0.240
5. 3 a Variation in Bearing Reproducibility 0. 362 0. 464 0. 370
6. Null Bias Torque 0.060 0.060 0.060
7. Nominal Boot Torque 0.235 0.301 0.240

to 8. Prediction Uncertainty in Boot 0.024 0.030 0.024
9. 3 a Variation in Boot Reproducibility 0. 035 0.046 0.037

10. Internal Aerodynamic 0 0 0
11. Offset Torque 0.533 0.533 0.321
12. Torque Due to 3-g Axial Acceleration 0.070 0.069 0. 035
13. Torque Due to 1-g Lateral Acceleration 0. 260 0. 257 0. 132
14. Inertial Torque 0.258 0.290 0.250
15. External Aerodynamic ? ? ? ? ? ?
16. Base Pressure Effects ? ? ? ? ? ?

Direct Sum 1.389 3.632 1.534 4.590 1.027 3.699
RSS 0.711 0.774 0.527
Worst Case 1. 389 + 3.632 = 5.021 1.534 + 4.590 = 6.124 1. 027 + 3.699 = 4.726
Statistical Combination 0. 711 + 3. 632 = 4.343 0. 774 + 4. 590 = 5. 364 0. 527 + 3. 699 = 4. 226

*20% used by agreement with NASA



The low-cost, baseline design of Configuration 0 uses low-cost material

throughout the nozzle with the exception of the critical throat area where a standard

carbon cloth phenolic is used. A development plan to fully qualify the low-cost

materials prior to the fabrication of the second demonstration motor (DM-2) is

presented in the data that follows. The use of low-cost materials in DM-2 and

standard (high-cost materials) in DM-1 provides the advantages that the first motor

can be fired using materials that are presently fully qualified, and a longer time

can be allocated to the development of the low-cost materials. The material

properties of the high- and low-cost carbon materials are sufficiently similar that

designing metal structures for either low- or high-cost materials is feasible. The

metal structure of all the configurations is designed so that either low- or high-cost

ablative materials can be incorporated into the same nozzle structure.

Figure 3-30 shows the Configuration 0 nozzle. A standard rayon precursor

carbon fabric phenolic is used in the throat. A -carbon fiber filled silicone elastomer

is used as insulation for the fixed housing. The remaining ablative materials are

various forms of pitch carbon fiber phenolic. The nose and lower exit cone are

fabricated of pitch carbon mat tape. The inlet rings are fabricated from pitch carbon

fiber molding compound, and the upper exit cone is fabricated from a hybrid consisting

of alternate layers of pitch carbon fiber mat phenolic and standard rayon carbon

fabric phenolic. The insulation material in the nozzle is canvas cloth phenolic. Each

of these materials is discussed in more detail in subsequent paragraphs.

The pitch base materials used in Configuration 0 are manufactured by the

Union Carbide Company; the Kureha Company in Japan also manufacturers like products.

The pitch used by the Union Carbide Company is a by-product of their polyethylene

plant and is available in large quantities. The low cost of the pitch carbon material

is due to the fact that it is manufactured from essentially a waste material, and in

the manufacturing process it is not necessary to use an intermediate precursor.

The pitch is converted directly to carbon filament with a yield of 90-95 percent.

The erosion resistance of a carbon material is directly related to the specific

gravity of the material. The pitch carbon has a specific gravity of approximately 2. 0
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as compared to 1. 6 for rayon carbon, thus this material has potentially better erosive

characteristics than does the standard rayon material.

The pitch based carbon is being developed by the Union Carbide Company for

commercial applications. There is wide use for the material irrespective of whether

it is used on the Space Shuttle nozzle or not. This large commercial application will

assure that the material is available at a low cost.

Pitch carbon fiber in a mat form is currently available from Union Carbide.

There has been approximately 10, 000 pounds of the mat manufactured. The mat

manufacturing line has been shut down to permit some equipment used in the mat line

to be used in the development of a continuous pitch fiber filament and to permit the

mat line to be moved from the laboratory environment to a manufacturing environment.

The mat line was restarted in May 1974.

The resin impregnated mat material is presently available from several pre-

preg suppliers in at least three forms: 1) A mat tape either with or without a thin

cotton scrim (the cotton scrim neither enhances nor detracts from the use of the

mat tape in nozzle manufacturing); 2) A mat tape or mat broadgoods with a standard

rayon carbon cloth as a scrim; and 3) A molding compound made from either a

macerated mat or from 1/2 inch X 1/2 inch chopped mat.

Pitch based carbon materials in these three forms have been used to

manufacture a large nozzle at Thiokol which was successfully test fired. They

are presently viable materials for nozzle manufacturing. Discussions on these

materials are presented below.

3.3. 3.1. 1 Mat Tape

Thiokol has used mat tape on a cotton scrim from the Fiberite Corporation

to make small test nozzles (for 5-pound propellant motors) and to manufacture a nose

ring for a Poseidon C3 size nozzle. Thiokol has also wrapped small test rings from

mat tape without a cotton scrim which was supplied by U. S. Polymeric and Hexcel.

Any of the above materials are satisfactory for use in the SRM nozzle, and these

tapes will be used in the nose ring and for the lower exit cone.
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Thiokol fabrication experience in using this material is that the material

wraps well, and no fabrication difficulty was experienced. The material wrapped

particularly well on angle wraps and in areas where a bias cut would have been

necessary had woven material been used. The material does need further develop-

ment to determine the optimum resin content.

3.3.1.2 Hybrid Tape

At the time the first hybrid tape was supplied to Thiokol by Fiberite, it was

ncessary that a scrim be used by the prepreg manufacturers to handle the mat tape.

The carbon scrim was used on this material to support the tape and to supply an

additional erosion resistant fabric. The Fiberite hybrid tape was used to manufac-

ture small evaluation nozzles and was used on a C3 size subscale nozzle for the

throat entry ring and in the upper exit cone, U. S. Polymeric has also manufactured

and supplied this material to Thiokol.

This material performed well in the upper exit cone. The performance in the

inlet area was satisfactory but somewhat questionable. This material is used in the

upper exit cone of the Configuration 0 nozzle.

TC experience in the fabrication of parts using the hybrid tape is that

this material is more difficult to wrap than the all mat tape and somewhat more

difficult than standard carbon cloth. The.main difficulties are that the material is

fairly thick, and it is difficult to uniformally heat the material before it goes under

the wrapping roll and to cool it afterwards. Becuase of the carbon scrim cloth, the

hybrid material must be bias cut if the part requires angle wraps. This material

needs further development to determine the optimum resin content and the relative

thicknesses between the scrim and the mat material.

3.3.1.3 Molding Compound

Pitch carbon mat molding compound has been supplied to Thiokol by Fiberite

Corporation and U. S. Polymeric. The Fiberite material is manufactured from a

macerated mat; U. S. Polymeric chops the mat in 1/2 inch X 1/2 inch squares.

The Fiberite material has been evaluated in small test nozzles, has been used in an

entrance ring in a C3 size subscale nozzle, and has also just been fired in the
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entrance ring in a C4 nozzle. Performance in both of these nozzles was very good.

This molding compound was used in the three nozzle entrance rings on the Configu-

ration 0 nozzle.

It has been Thiokol's experience that this material molds well and is easily

machined in the approximately 21 inch diameter ring used on the C3 size subscale

as well as on the smaller C4 entrance ring.

Development work is required to insure that there are no problems in scaling

up to rings of the size required for the SRM nozzle.

A disadvantage of the material has been the large bulk factor of this material.

Some work has been done by U. S. Polymeric to provide the material in preformed

disks about 3 inches in diameter and 1/2 inch thick. Using the preformed material,

the bulk factor is significantly reduced.

Union Carbide has been working to develop a continuous filament from the

pitch base material. They have succeeded in developing these techniques and

small quantities have been supplied to the industry. Present plans are to manufacture

several thousand pounds of continuous filament in 1974.

With the development of the continuous pitch filament, it is planned to weave a

broadgoods cloth from the pitch fiber. There has been some concern as to whether

the continuous filament with its high modulus could be woven into cloth without

breaking. To demonstrate this technique, continuous PAN carbon filaments with

about the same diameters and modulus were satisfactorily woven into broadgoods

material. Small amounts of the continuous pitch have also been woven into cloth,

impregnated with resin, and manufactured into flat laminates.

If the continuous filament and resulting broadgoods are developed as expected

and costs are as projected, this material could be used for all tape wrapped parts

of the nozzle. It is also possible that it could be used for the inlet rings to replace the

molded parts. However, studies have indicated that molding parts would be less

expensive than using tape wrapped manufacturing techniques.

The continuous pitch filament cloth is expected to be available in quantities

suitable for development work in 1974. By 1980 it is expected that the woven fabric
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will sell at $2-$4 per pound. If this pitch carbon cloth is as completely successful

and inexpensive as projected, it will undoubtedly be the standard material by 1978,

and possibly the only carbon cloth available.

Canvas cloth phenolic is a standard well characterized material that has been

used as insulator and ablator in several Thiokol nozzles. It is used in the Configura-

tion 0 nozzle as the insulator under the carbon ablative materials. This material has

a low cost and a low density which makes it very attractive. Thiokol's experience

has been that this material is easy to handle and parts are readily fabricated from

it. The material is compatible with the carbon materials proposed. As a result,

canvas cloth can be overwrapped over the staged and machined carbon materials

and cured simultaneously with the carbon materials.

Early in the development of canvas cloth material some difficulty was

experienced with parts that had been wrapped of canvas cloth, machined and exposed

to a high humidity atmosphere. Apparently, the cotton fibers on the machined edge

absorbed moisture and caused warpage. This can be easily prevented by sealing the

machined surfaces as would be normally done during the fabrication of the nozzle.

There has also been some concern that inflation in the cotton market will raise the

price of this material so that it is no longer cost effective. If this is true, other

materials such as glass can be substituted for the canvas cloth. Substitutions of

glass, however, would result in a higher weight part.

Carbon filled silicone rubber is used as the fixed housing insulator on both

the low-cost and standard materials nozzle. This material has been demonstrated

on several Thiokol nozzles and performs very well. The material is vacuum mixed

and vacuum cast directly onto the primed metal housing. The material cures at room

temperature.

This material is the only plastic material on the nozzle that can be refurbished.

This will be done by placing the fixed housing in a vertical boring mill and machining

away the heat affected material. The carbon filler in the material gives it enough

rigidity that machining is a practical operation. After the heat affected material
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has been machined away, the fixed housing is placed in the same mold that was

used for the original casting and new material is vacuum cast to replace that which

had been machined away. The new material will self-vulcanize to the machined

surface on the old material.

There are three other candidate materials for use as low-cost nozzle ablative

materials. These are KYNOL carbon, filled carbon cloth, and silica cloth phenolic.

The KYNOL material has been developed for flame resistant materials. The

basic fiber is manufactured from a phenolic. This phenolic fiber is woven into cloth

and then carbonized and impregnated with the same phenolic from which the basic

fiber was made. This material has been demonstrated in small motors and is now

being tested on the Trident C4 program. There are two disadvantages in the material

at the present time. One of them is that the C4 program has had difficulty in

obtaining the carbonized KYNOL material to conduct their tests. The other is that

the cost of the KYNOL material is significantly higher than the pitch based material.

The price of standard carbon cloth phenolic can be reduced about one-half

by the addition of a higher than normal amount of resins and fillers such as chopped

carbon and/or ceramic. Thiokol tested this material in the throat of the C3 size

subscale nozzle which was tested in July 1973. The material did not perform well

in the severe throat environment. It may be that in the nose or the exit cone that

performance would be adequate. Again, this material is significantly more costly

than the proposed pitch based material.

Silica cloth phenolic has been used for years in areas of the nozzle where the

environment will permit, particularly on the back side of submerged nozzles and

in the outer exit cone. This material is very satisfactory for these areas, however,

it has about a 20 percent higher density than carbon cloth and subsequently adds

weight to the nozzle.

There are three other candidate materials that could be used as insulators in

the low-cost nozzle. They are silica cloth phenolic, paper phenolic, and glass cloth

phenolic.
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The silica cloth phenolic is an excellent material but is higher in cost and has

a higher density than the canvas cloth used on the Configuration 0 nozzle.

Paper phenolic materials show potential but have not been well characterized

at the present time and would require more development work than the other two

alternatives.

Prior to selecting the low-cost materials which Thiokol used for the Configura-

tion 0, SRM nozzle, a three-part testing program was conducted. Twenty-three

different low-cost materials were evaluated in this testing program. The three parts

of the program were:

1. Nozzles for small subscale test motors were made

from each of the candidate materials. These

TU-379 motors each contained 5 pounds of SRM

propellant and burned for approximately 10 seconds

at a chamber pressure similar to that of the SRM.

Figure 3-34 is a series of photographs which show

cross sections of four nozzle billets fired on Thiokol

TU-379 motors during the material selection

process. The photographs show a standard carbon

cloth nozzle, a nozzle made from pitch carbon

molding compound, a nozzle made from pitch mat

tape, and a nozzle from a filled carbon cloth

material. As measured from these nozzles, the

erosion rate of the pitch carbon molding compound

and pitch mat tape was very similar to that seen on

the standard carbon cloth nozzle. As is evident in

the photograph of the filled carbon cloth nozzle, this

material had an erratic erosion pattern. The material

was not deemed suitable for further evaluation.
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TYPICAL TU-379 BILLETS

STANDARD CARBON CLOTH PITCH CARBON MOLDING COMPOUND

1 i 3 5 T I 2 3 < 4 3

FILLED CARBON CLOTH* PITCH MAT TAPE
*THIS MATERIAL REJECTED BASED ON THIS FIRING 74170

Figure 3-34. Small Motor Firings



2. Laboratory tests were conducted on the candidate

materials to determine structural and therodynamic

properties. The laboratory tests were conducted

on samples of the cured material to obtain the

structural and thermal properties shown on Table XIX

One of the interesting data points on this table is

the specific gravity of the pitch fiber mat of 1. 27.

This was lower than the usually desired value of

approximately 1.4. Subsequent data at Thiokol

indicate that by increasing the wrapping and curing

pressure this density can be increased to 1.4 or

greater. The value of 1. 27 shown here confirms data

that U. S. Polymeric has developed which shows that

the density of the pitch fiber mat is sensitive to the

wrapping and curing pressure. Thus, it may be

possible to obtain a low density carbon for use in the

outer exit cone by varying the wrapping pressure.

3. A subscale nozzle was manufactured from selected

low-cost materials and fired on a Poseidon Stage I

motor. This was a significant test in that (a) the

Poseidon propellant is near identical to that proposed

for the SRM, (b) the chamber pressure of the Poseidon

is approximately the same as the SRM, and (c) the

subscale Poseidon nozzle and motor are large enough

to give meaningful results. The subscale nozzle throat

diameter was 11. 596 inches. The expansion ratio

was 8. 2. The motor contained 38, 000 pounds of

propellant and had a 64 second burntime. The motor

is 74 inches in diameter. Figure 3-35 is a sketch of the

subscale nozzle manufactured and test fired by Thiokol
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TABLE XIX

MATERIAL PROPERTIES FROM THIOKOL LABORATORY TESTS

YOUNG'S
DOWEL P IN TENS ILE

FLAT DOUBLE SHEAR ULTIMATE ULTIMATE MODULUS WITH PLY (1000-3000 F)
LAMINATES VOLATILE RES IN INTERLAMINAR EDGEWISE TENS ILE E X10 6  COEFFICIENT OF LINER
SPECIFIC CONTENT CONTENT SHEAR COMPRESSION STRENGTH T THERMAL EXPANS ION

SUPPLIER MATERIAL GRAVITY (%) I%) (PSI) (PSI) (PSI) (PSI) (IN/IN/F)

FIBERITE MX4926 - STANDARD CARBON CLOTH 1.45 0.46/0.34 36.67/35.55 4,095 30, 150 23, 475 1.373 5.0

PHENOLIC - RAYON CLOTH BASE

FIBERITE MX4927 - FILLED STANDARD CARBON 1.43 0.35 NA 2,755 27, 166 17,220 2.64 NA

CLOTH PHENOLIC - RAYON CLOTH BASE

FIBERITE MX4928 - CARBONACEOUS PITCH FIBER 1.37 0.40 NA 1,805 23,366 5,861 4.12 6.1

MAT/CARBON FABRIC (RAYON) CARRIER/
PHENOLIC

FIBERITE MXC-313P - CARBON PITCH.FIBER 1.40 1.11 NA 1,665 10,875 4,400 1.078 8.7

PHENOLIC MOLDING COMPOUND

FIBERITE MX4929 - CARBONACEOUS PITCH FIBER 1.27 1.26 NA 4,163 27,490 10,025 1.465 NA

MATICOTTON SCRIM CARRIER

FIBERITE MX2600 - STANDARD SILICA CLOTH 1.69 0.13 31.72 6,127 42,633 10,142 2.94 6.7

PHENOLIC - GLASS CLOTH BASE

FERRO ACFX-R96 SILICA CLOTH PHENOLIC - 1.71 0.77 34.91 1,855 14,383 6,619 2.28 NA

GLASS CLOTH BASE DOUBLE TH ICK



1 13

CURE
COMPONENT MANUFACTURER'S PRESSURE

NUMBER MANUFACTURER DESIGNATION MATERIAL DESCRIPTION (PSIA)

1 DOW CORNING DC 93-104 CARBON FILLED SILICONE RUBBER AMB IENT

2 FIBERITE CORP MXS-175 S ILICA FABRIC/PHENOLIC 250

3 FIBERITE CORP MX 4929 CARBONACEOUS PITCH FIBER MATICOTTON 250
SCRIM CARRIERIPHENOLIC

4 FIBERITE CORP MXC-313-P PITCH FIBER PHENOLIC MOLDING COMPOUND 1,000

5 FIBERITE CORP MX 4928 CARBONACEOUS PITCH FIBER MATICARBON 1,000
FABRIC CARRIERIPHENOLIC

6 US POLYMERIC FM 5768 CARBON FABRIC/PHENOLIC 1,000

7 FIBERITE CORP MX 4927 CARBON FABRIC/PHENOLIC 1,000

8 HEXCEL 4C1008 (F) CARBON FABRICIPHENOLIC 1,000

9 FIBERITE CORP MX 4926 CARBON FABRIC/PHENOLIC 1,000

10 FIBERITE CORP MX 4926 CARBON FABRIC/PHENOLIC 1,000

11 FIBERITE CORP MX 4928 CARBONACEOUS PITCH FIBER MAT/CARBON 250
FABRIC CARRIER/PHENOLIC

12 FIBERITE CORP MX 2600 SILICA FABRIC/PHENOLIC 250

13 FERRO CORP ACX R-96 SILICA FABRICIPHENOLIC 250

14 FIBERITE CORP MX 2600 SILICA FABRIC/PHENOLIC 250

15 FIBERITE CORP MX KF418 CANVAS FABR IC/PHENOLIC 250

16 FIBERITE CORP MX 2600 SILICA FABRIC/PHENOLIC 250

Figure 3-35. Poseidon C3 First Stage Low-Cost Nozzle (Tested 5 July 1973)



to demonstrate the low-cost materials. This test

firing was completely successful and served the

desired purpose of identifying those low-cost

materials which are suitable for use in the SRM

nozzle.

Figure 3-36 shows a comparison between the erosion rate of the low-cost

materials and standard materials in the same environment.

In the nose, the erosion rate of the pitch carbon fiber mat compares quite well

with graphite cloth phenolic. Previous data showed that density of the pitch carbon

fiber was quite low in this part (specific gravity = 1. 27). By increasing the pressure

during wrapping, the performance of this pitch mat in the entrance section could

be improved.

The pitch carbon fiber molding compound in the entrance ring performed

better than standard graphite cloth phenolic. In the throat region, the low-cost

nozzle did not perform well. The erosion rate of filled carbon cloth phenolic in the

throat was erratic and so high that it affected the other materials in the throat

region. Thiokol did not use any of these filled materials in the SRM nozzle. Standard

carbon cloth phenolic is used for the throat of all SRM configurations.

In the upper exit cone the pitch carbon fiber phenolic with a carbon scrim

material did not perform quite as well as carbon cloth phenolic but is certainly very

satisfactory.

Thiokol is encouraged by the performance of the pitch carbon mat materials

in this first demonstration motor and is confident that with some development work

these materials will be completely satisfactory for use in the SRM nozzle.

A Development Program has been delineated which is a logical extension of

the work done to date. It consists of:

1. Additional material screening, using the small 5-inch

TU-379 motors
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LOW COST MATERI ALS

STANDARD MATERIALS

28

24 -

CARBON FABRIC PHENOLIC (NEW FILLED CARBN CLTH PHENCC
FILLED CARBON CLOTH PHENOLIC

LOW COST RAYON PRECURSOR)

20 
-

PITCH CARBON FIBER PHENOLIC/
S1 CARBON CARRIER FABRIC

16

< GRAPHITE CLOTH PHENOLIC

2 12
L. -PITCH CARBON FIBER PHENOLIC .. -0

\ COTTON CARRIER FABRIC .oI CARBON CLOTH PHENOLIC

PITCH CARBON FIBER PHENOLIC/
S1CARBON CARRIER FABRIC

PITCH CARBON FIBER PHENOLIC ..
0 • ,MOLDING COMPOUND

-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

AREA RATIO

Figure 3-36. Low-Cost Materials Test Performance Comparison



2. Laboratory tests to obtain additional material

properties over a range of material temperatures

3. Fabrication development to optimize the prepreg

material characteristics such as the percent solvent,

percent resin, wrapping pressure and the cure cycles

4. The demonstration of the pitch fiber molding compound

in molded rings of the size required for the full scale

nozzle and definition of the fabrication procedures

5. Additional subscale motor tests (Poseidon size) to

further demonstrate and confirm the performance

of the selected material

Figure 3-37 shows a material matrix which is a logical follow-on to the C3 motor

fired at Thiokol in July 1973. The selection of materials for tests 2, 3, and 4 are

based on the assumption that the materials would perform as expected in the previous

tests. If any material performs exceptionally well, or not as well as expected, the

test matrix for succeeding nozzles would be modified to account for these anomolies.

There have been discussions with NASA on the desirability of including

additional subscale motor tests for a total of six. If this is done, it is Thiokol's

recommendation that the last two tests would be material confirmation tests and

would use the same matrix of materials as fired in test 4. This would permit data

to be obtained on reproducibility of the materials.

A schedule showing the above development program is shown in figure 3-38.

The schedule assumes a Thiokol ATP at 1 July 1974 and the static firing of DM-1

and DM-2 in December 1976 and March 1977, respectively.

The schedule further assumes that the first demonstration motor would use

standard (high-cost) materials throughout the nozzle and that the nozzle for DM-2

would contain the first low-cost materials fired in a full scale nozzle.

The development program is amenable to either four subscale motors or six

subscale motors as shown in the figure.
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COMPONENT TEST 1 TEST 2 TEST 3 TEST 4

1 CARBON FILLED SILICONE RUBBER CARBON FILLED SILICONE RUBBER CARBON FILLED SILICONE RU~8t CARBON FILLED SILICONE RUBBER

2 PITCH MAT TAPE (Vl): PITCH MAT TAPE (V3) PITCH FABRIC PITCH FABRIC

3 PITCH MAT TAPE (V2) PITCH MAT TAPE (VI) PITCH FABRIC PITCH.FABRIC

4 PITCH MOLDING COMPOUND (VI) PITCH MOLDING COMPOUND (V3) PITCH MOLDING COMPOUND PITCH MOLDING COMPOUND

5 PITCH MOLDING COMPOUND (V2) PITCH MOLDING COMPOUND (Vl) PITCH MOLDING COMPOUND PITCH MOLDING COMPOUND

6 PITCH MOLDING COMPOUND (V3) PITCH MOLDING COMPOUND (V2) PITCH MOLDING COMPOUND PITCH MOLDING COMPOUND

7 STANDARD CARBON CLOTH STANDARD CARBON CLOTH PITCH MOLDING COMPOUND PITCH FABRIC

8 STANDARD CARBON CLOTH STANDARD CARBON CLOTH STANDARD CARBON STANDARD CARBON

9 STANDARD CARBON CLOTH HYBRID TAPE (V2) PITCH FABRIC PITCH FABRIC

10 HYBRID TAPE (Vl) PITCH FABRIC PITCH FABRIC PITCH FABRIC

11 HYBRID TAPE (V2) HYBRID TAPE (Vl) PITCH FABRIC PITCH FABRIC

12 PITCH MAT TAPE (VI, V2, AND V3) PITCH MAT TAPE (VI, V2, AND V3) PITCH MAT TAPE PITCH FABRIC

''V1, V2 AND V3 INDICATE POTENTIAL VENDORS

Figure 3-37. Material Matrix Subscale (C3 Size) Motor Tests



SUBSCALE PROGRAM

1974 1975 1976 19
J AIS1 N D FMAIMI I. AS ND.FAM AISDA M
3 4 5 .6 7 8 9 10 11 1213 14 15 16 1718 19 20 21 22 25 2627 28 29 31 32 33

DM-1(STDMAT)

DM-2 (I OW COST MAT)

MATERIAL SCREENING

LABORATORY-TESTS I i i u i

CA jFABRICATION DEVELOPMENT
FABRICATION/TEST CYCLE

PROCESS REPRODUCIBILITY
! i STATIC TEST

MOLDED RING DEMONSTRATION

6 MOTOR SUBSCALE PROGRAMoA TERNATf

Figure 3-38. Development Schedule



Thiokol is pleased with the progress made thus far on the continuous filament

pitch material, and the prospects of woven pitch carbon cloth continue to be favorable.

If this development continues on the schedule and at the cost projected by Union Carbide,

the woven material will certainly revolutionize the carbon cloth industry and may

replace what is now the conventional materials. It would seem essential to actively

pursue the development of this material.

The pitch molding compound also seems to be a very viable material for use

in the entrance sections of the nozzle because of the potential cost savings of making

molded parts as opposed to tape wrapped parts.

The tape mat and the hybrid pitch materials certainly show promise, but

could be replaced by the continuous filament pitch cloth. The continued development

of these materials should be tempered by the progress on the continuous filament

cloth.

The schedule shows that there is time to develop the low-cost materials and

to delay the decision on their use until these data are available from the develop-

ment program. Thiokol strongly recommends that the low-cost materials be

developed and used in the SRM nozzle. In summary, Thiokol feels that the

parallel approach to low-cost and high-cost materials is a sound and viable way to

develop a low-cost nozzle while simultaneously protecting the SRM schedule. There

is a significant cost saving which can be implemented by using a low-cost material

and the development work done to date indicates that the material development is

relatively low risk.
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3.3.2 Plastic Material Safety Factor Interpretation

The safety factor Thiokol used in the design of the nozzle plastic parts on

the baseline (Configuration 0) nozzle was different than the approach that NASA

used in evaluating the nozzle. The differences as Thiokol understands them are

delineated on figure 3-39. If the NASA approach is applied to the Thiokol nozzle,

the effect is to increase the thickness of the ablative material and decrease the

thickness of the insulation material. Because the ablative material is a higher density

and higher cost than the insulative material, the result is a weight and cost increase.

If normal nozzle erosion occurs (and we have every confidence that after

definition in the DDT&E program that the erosion rate will be well defined), then

a nozzle designed by either criterion will perform satisfactorily. This means that

at motor burnout there will be no temperature rise in the nozzle structure and that

at water impact the nozzle structural parts will not have increased in temperature

to the point that any damage has occurred.

Using the NASA approach to the safety factor, the above statements hold

even if double erosion occurs. If double erosion occurs on the Thiokol design, there

is still no temperature rise in the structural parts at motor burnout. However, the

insulating liner under the ablative material would be charred. Thiokol feels that

these conditions do not constitute any reliability degradation for the performance of

the motor and the safety of the mission.

If double erosion did occur on a nozzle designed to the Thiokol criteria, at

the time of water impact the structural temperature would be too high to assure that

the metal parts could be refurbished and reused.

Figure 3-40 shows the Thiokol Configuration 0 nozzle which uses the safety

factors as Thiokol interpreted the requirement. The thickness of the carbon cloth

material at the throat was 1. 8inches. At an expansion ratio of approximately 3:1,

the thickness of the ablator was 0. 5 inch with a thickness of canvas cloth phenolic

insulation of 0. 5 inch. The effect of changing the safety factors on this nozzle is

shown on figure 3-41 where the thickness of ablative material at the throat has
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THIOKOL APPROACH NASA APPROACH

* ABLATIVE MATERIAL DESIGN CRITERIA 2 X NOMINAL EROSION 2 X NOMINAL EROSION
+ 1.25 X CHAR

* INSULATIVE MATERIAL DESIGN CRITERIA 1.25 X CHAR THERMAL PROTECTION
+ THERMAL PROTECTION

* PROGRAM EFFECTS ARE:

WEIGHT INCREASE OF 812 LB

IF NORMAL EROSION OCCURS, BOTH NOZZLES PERFORM SATISFACTORILY

IF DOUBLE EROSION OCCURS ON TC DESIGN, STRUCTURAL PARTS EXPERIENCE NO
TEMPERATURE RISE AT MOTOR BURNOUT, HOWEVER:

THERE WOULD BE CHAR IN THE INSULATOR

AT WATER IMPACT, STRUCTURAL TEMPERATURE WOULD BE TOO HIGH TO ASSURE
REFURBISHMENT

Figure 3-39. Plastic Material Safety Factor Interpretation



PITCH CARBON FIBER PHENOLIC
MOLDING COMPOUND

23.00 IN. 126.20 IN.
56.40 IN. .8
DIA RAYON CARBON FABRIC PHENOLIC

(STANDARD CARBON CLOTH)

PITCH CARBON FIBER MAT PHENOLICIRAYON CARBON FABRIC PHENOLIC

O 0.5

0.5 PITCH CARBON FIBER MAT PHENOLIC TAPE

CANVAS CLOTH PHENOLIC
SPITCH CARBON FIBER
MAT PHENOLIC TAPE GLASS CLOTH EPOXY

CARBON FIBER FILLED SILICONE ELASTOMER

HIGH COST MATERIAL:

RAYON BASED CARBON
FABRIC PHENOLIC IN THROAT

LOW COST MATERIALS:

PITCH BASED CARBON PHENOLICS

CANVAS CLOTH PHENOLIC INSULATION

CARBON FILLED SILICONE RUBBER

Figure 3-40. Baseline Low-Cost Nozzle



PITCH FIBER MOLDING COMPOUND

2.5

STANDARD CARBON CLOTH PHENOLIC

PITCH FIBER MATICARBON CLOTH PHENOLIC

PITCH FIBER MAT/PHENOLIC

CANVAS CLOTH
PHENOLIC

A0.6 PITCH FIBER MAT

GLASS CLOTH PHENOLIC

CARBON FILLED
SILICONE RUBBER

AWEIGHT = +812 LB

Figure 3-41. Revised Baseline Design Low-Cost Materials -
NASA Safety Factors



increased from 1. 8 inches to 2. 5 inches. In the exit cone the thickness of the

ablative material has increased and the thickness of the insulation material has

decreased to the point that it is probably impractical to use a separate insulative

material. Consequently, the canvas cloth insulator has been, eliminated in the exit

cone and the glass cloth thickness has been increased so that it can serve both as

insulator and as the structure for the exit cone. Changing to this safety factor

approach has increased the weight of the nozzle by 812 pounds. The estimated cost

increase is $7, 000 per nozzle.

Figure 3-42 shows the nozzle configuration using the NASA safety factor

application and with high-cost materials in the nozzle. A weight increase of

1, 783 pounds occurs. This weight increase includes the 812 pounds due to safety

factor changes and 971 pounds due to changes in materials. The estimated cost

increase is $74, 000 per nozzle. The majority of the 971-pound weight change is

due to the use of silica cloth phenolic in the exit cone rather than using pitch mat

phenolic as shown on the two previous configurations.

Thiokol has been asked to compare its approach to the safety factor on the

SRM nozzle with the approach used on other solid rocket motor nozzle designs.

The reason that Thiokol used the approach that it did was that it was philosophically

the same as that used for Minuteman nozzle design and for the design of development

and prototype nozzle concepts at Thiokol. The safety factors applied to the SRM,

however, were higher than those traditionally used. For example, the traditional

approach to ablative liner thickness at Thiokol has been to apply a 1.5 safety factor

to the maximum predicted erosion depth. On the SRM design we used a 2. 0 safety

factor on the maximum predicted erosion depth. The traditional approach to insulator

thickness is to design insulator thickness with a safety factor of 1. 0 times the maxi-

mum predicted char thickness plus sufficient additional material to reduce the

temperature to ambient at the structural interface. On the SRM nozzle the same

approach was used except that a 1. 25 factor of safety was applied to the predicted

char thickness.
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CARBON CLOTH PHENOLIC

CARBON CLOTH PHENOLIC

1.1

SILICA CLOTH 0.6
GLASS CLOTH PHENOLIC
PHENOLIC HEL GLASS CLOTH SILICA CLOTH PHENOLIC

PHENOLIC

CARBON FILLED SILICONE RUBBER

A WE I GHT - +1,783 LB

Figure 3-42. Baseline Design High-Cost Materials -
NASA Safety Factors



Because of the manrating on the Space Shuttle Solid Rocket Motors, Thiokol

feels it is realistic to increase the ablative liner safety factor to 2. 0 and the insulator

thickness safety factor to 1. 25.

Nozzles designed by the Thiokol approach or the NASA approach are not as

conservative as the actual nozzles now being used on the Titan and Poseidon pro-

grams. The Titan and Poseidon nozzles were both designed several years ago and

were the first nozzles designed using an ablative throat material. Both designs

were done independently, i.e., the Poseidon nozzles were designed without benefit

of the Titan test data and vice versa. Test data on these nozzles prove that they are

both extremely conservative.

In the past few years the analytical erosion and heat transfer prediction

techniques at Thiokol and throughout the industry have significantly improved, and

much better predictions are now possible. To a real extent, this improvement has

been because of the experience on the Titan and Poseidon nozzles. Thiokol recommends

that the capability of the current analytical techniques should be evaluated using

the existing Titan and Poseidon data. In this manner the accuracy of the current

prediction techniques will be established and the SRM nozzles can be designed

without the large allowance for design uncertainty that was necessary in the Titan

and Poseidon nozzles.

Thiokol feels that these studies on the Titan and Poseidon nozzles will show

that the Thiokol approach is valid and cost effective.

3.3.3 Aft Skirt and Actuation System Interface

A significant consideration in the design of the nozzle is the interface between

the nozzle, the actuation system, and the aft skirt. These interfaces influence

the following design factors:

1. Nozzle pivot point location

2. Nozzle torque

3. Nozzle submergence

4. Nozzle compliance ring location
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5. Nozzle field joint requirement

6. Actuation system power

7. Hydraulic power supply system output power and

installation envelope

8. Actuation system kinematics

9. Servoactuator stroke, force, hydraulic pressure,

envelope and re-entry loads

10. Aft skirt must provide clearance and structural

support for TVC actuation system components

Data has been prepared comparing two configurations, one of which had a

nozzle submergence of 22 percent and the other with a submergence of 0 percent.

These data are summarized in Table XX and figure 3-43.

The comparison of the two systems from a performance point of view is

highly dependent upon interactions between the nozzle and the SRB actuation system

and aft skirt and upon the pad interface. Extending the nozzle length will probably

require a one for one increase in aft skirt length.

In an attempt to evaluate the motor performance several different assump-

tions were made as listed below and the performance calculated by iteration through

the design requirements equations in the Request for Proposal.

1. Performance Assumption No. 1.

Assumptions

a. There is no length constraint and unsubmerged

design is 41.3 inches longer than submerged

design.

b. The skirt increased in length by 41.3 inches and

in weight by 4, 130 pounds (100 lb/in.).

Results

Under these assumptions, an additional 11, 548 pounds

of propellant can be loaded into the case of the unsub-

merged design as compared to the submerged design.
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TABLE XX

SUBMERGENCE COMPARISON

Baseline Desubmerged

Submergence (percent) 22 0

Inert SRM Weight Changes (pounds)
-1,768

Nozzle 0

Aft Dome 0 +74

Aft Insulation 0 +1,038

Total SRM Weight Change 0 -656

Total Motor Length Change +41.3

Propellant Weight Change

Due to Submergence +11,548

To Keep Same Length (41.3 x 820 lb/in.) -33, 866
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56.4 IN. DIA

113.3 IN.
DIA 114.6 IN. DIA UBMERGENCE 2

0.10 IN.

-9N41.3 IN.

. - . 1.59 IN.

1.53 IN.
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-J

• 0 1N I_-- 9 A

5.76 IN.
3.98 IN.

2.64 IN.

11.70 IN.

0.92 IN.

Figure 3-43. Submergence Comparison



The inert weight increase is +4, 130 pounds for the skirt

and -656 pounds for the SRM for a total of 3,474 pounds.

Iterating the design requirement equation indicates that

6, 065 pounds of propellant are required to carry the

additional inert weight. This leaves 5,483 pounds of

propellant that can be used for performance improvement.

2. Performance Assumption No. 2.

Assumptions

a. There is no length constraint and unsubmerged

nozzle is 41.3 inches longer than submerged design.

b. The skirt does not change.

Results

Because of the reduced inert weight of the SRM

(-656 pounds) and the additional 11, 548 pounds of

propellant that can be loaded in the motor, there

is an excess of 12, 860 pounds of propellant that

can be used for performance growth.

3. Performance Assumption No. 3.

Assumptions

a. Both systems must be the same length.

b. The skirt weight change is neglected.

Results

The unsubmerged nozzle system must be reduced

in length 41.3 inches. To do this the case must be

shortened and will lose approximately 820 pounds

of propellant/inch or 33, 866 pounds. The aft dome

of the unsubmerged nozzle will contain 11, 548 pounds

of propellant more than the submerged case. Thus,

total propellant loss in the unsubmerged design is

22,318 pounds.
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Thiokol is concerned with the concept of a zero submergence nozzle.

Experience does not exist in the industry for flexible bearings having shims running

near parallel to the motor centerline. Thiokol is also concerned about the flow

field in the aft end of the motor if a submerged nozzle is not used.

Data were also prepared on the interface between the actuator and the

SRM nozzle. This study addressed the feasibility of using the SSME actuator for

the SRM. The data included three drawings which are briefly discussed and

summarized below.

1. TUL 13878-SSME Actuator, MSFC Specified Attach Point and Baseline
Pivot Point Nozzle Installation

TVC System geometry, kinematics, installation envelope, and water impact

loads were investigated for an actuator with attach points defined by NASA.

(Moment arm 62 inches, cold pivot point 39 inches aft of throat, SSME actuation

pressure increase to 3, 600 psi). The SSME actuator was found to be unacceptable

because the nozzle torque for that specific pivot point location (4.11 x 106 in. Ib)

exceeded the actuator capability even at 3, 600 psi operating pressure. Stroke

considerations were also found to be insufficient because allowing for proper

nozzle/case deformation (0. 050 inch), crosstalk between actuators (0. 030 inch),

structural compliance requirements (0.40 inch), extend stroke (5.41 inch) and

retract stroke (5.39 inches) comes to 11. 28 inches total. Current SSME actuator

stroke is 10. 90 inches total. This basic actuator installation would increase the

weight of the nozzle compliance ring by approximately 385 pounds. However, splash-

down considerations are acceptable for the SSME actuator using this arrangement.

2. TUL 13874-SSME Actuator Installation Aft Pivot Point 66% of
Baseline Design

This study was very similar to the above configuration except that the

actuator aft attach point (on the skirt) was moved forward to relieve the stroke

area problems. Again, the SSME actuator (operating at 3,600 psi system pressure)

was found to be marginal. 3. 61 x 10 6 in. /lb torque would be required and the

actuator capabilities are 3. 73 x 106 in. /lb. Similarly, the actuator stroke requirement
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SSME ACTUATOR INSTALLATION STUDY 8 7 6 5 1_ 1 3 1

SRM CONFIGURATION REV B

I 1-T

LAYOUT NUMBER 1 (BASELINE PIVOT POINT)

USE UNMODIFIED SSME ACTUATOR, MSFC SKIRT, AND TC CONFIGURATION 1 AND 2 NOZZLE

ACTUATOR AND NOZZLE REQUIRED BY SSME ACTUATOR CAPABILITIES
DATA DESIGN OR LAYOUT BASED ON 3, 600 PSI COMMENTS on

TORQUE (IN-LB) (ACTUATOR TORQUE = (FORCE) (MA) NOT ACCEPTABLE
*SEE TYPICAL TORQUE CALCULATION (MARGINAL)

(4.11) (106) RETRACT TORQUE = (3.88) (106)

EXTEND TORQUE = (3.91) (106)

STROKE (IN.)

EXTEND 5.41 5.275 NOT ACCEPTABLE
RETRACT 5.39 5.623 -

AP ALLOWANCE 0.05 --
CROSSTALK ALLOW. 0.03 --
COMPLIANCE 0.40 --

TOTAL STROKE 11.28 10.90

0 POTENTIAL MODIFICATIONS TO ACTUATOR

" REQUIRED ACTUATOR FORCE =MAX TORQUE (4.11) (106) 66, 682 LB
MIN MA - 61.47 =

PERCENT OF INCREASE IN SSME ACTUATOR FORCE CAPABILITY REQUIRED = (66,682- 63,093 (100) 5.6%
63,091 / 5

* "INCREASE PRESSURE" MODIFICATION TO ACTUATOR

SSME NOMINAL SUPPLY PRESSURE MUST INCREASE FROM 3,600 X 1. 056 = 3,804 PSIG - KL ,

* "INCREASE AREA" MODIFICATION TO ACTUATOR

NOMINAL PISTON AREA MUST INCREASE FROM 24.83 X 1.056= 26.24 SQUARE INCHES -

NOMINAL PISTON DIAMETER MUST INCREASE FROM 5.62 TO 5.78 INCHES

* INSTALLATION WEIGHT PENALTY
* eTYPICAL TORQUE CALCULATION

* INCREASE IN COMPLIANCE RING WEIGHT FROM LAYOUT ESN LAYOUT .

DESIGN NO. 2 = 385 LB T = (F) (MA)= 3,600 - 3, 000 - 2
8  

(24.83) (61.47) =

" MAJOR PROBLEM AREAS (3.88) (106)MI ICI OOIN-LBP ICI OOi-

* NO ACTUATOR GROWTH CAPABILITY (Zr; M-OQ P. AOZZZ 005 c)

* INSUFFICIENT STROKE TO MEET EXISTING REQUIREMENT e D e--o -a-

* SPLASHDOWN CONSIDERATIONS rr sco . ..

* ACCEPTABLE - WORST CASE STROKE = 0.88 IN.; WORST CASE VECTOR ANGLE = 1.3 DEGREES Sc O C T OI
RASELINE PIVOT POINT A
NOZZLE IN5TALLATION

*7n TUL13,78

8 I7 -5 I 3 2

74183

EOLUME / 9



SSME ACTUATOR INSTALLATION STUDY
SRM CONFIGURATION (CONT) REVB

LAYOUT NUMBER 2 (66% PIVOT POINT) - .
USE UNMODIFIED SSME ACTUATOR, MSFC SKIRT, AND TC CONFIGURATION 1 AND 2 NOZZLE T

ACTUATOR AND NOZZLE REQUIRED BY SSME ACTUATOR CAPABILITIES I
DATA DESIGN OR LAYOUT BASED ON 3, 600 PSI COMMENTS o I

TORQUE (IN-LB) CTUATOR TORQUE = (FORCE) (MA) ACCEPTABLE

(3.61) (106) ETRACT TORQUE = (3.74) (106) (ONLY 3.3% GROWTH CAPABILITY)

EXTEND TORQUE = (3.73) (106)

STROKE (IN.)

EXTEND 5.17 5.275 C.q.Z

RETRACT 5.18 5.623 ACCEPTABLE
AP ALLOWANCE 0.05 --

CROSSTALK ALLOW 0.03 -- (ONLY 0.6% GROWTH CAPABILITY)
COMPLIANCE 0.40 -- L o -X: . _

TOTAL STROKE 10.83 10.90 E

* POTENTIAL MODIFICATIONS TO ACTUATOR

REQUIRED ACTUATOR FORCE = MAX TORQUE =3.61) = 61 093 LB (ACTUATOR FORCE CAPABILITY = 63. 093 LB)

PERCENT OF INCREASE IN SSME ACTUATOR FORCE CAPABILITY REQUIRED - NONE

* MAJOR PROBLEM AREAS

* NO GROWTH ALLOWANCE FOR

* BASE PRESSURE EFFECTS

* EXTERNAL AERODYNAMIC LOAD

I PAD CHECKOUT (UNPRESSURIZED) I
* NOZZLE TORQUE (COLD) = (3.34) (106) IN LB , -

* ACTUATOR TORQUE CAPABILITY= -NA

(63, 093) (61. 89) = (3. 91) (106) IN LB - )
5'C. tl~l.0 ii__ I DESIGN LAYOU T NO. Z

* NOZZLE VECTOR CAPABILITY WITH x I'..O --e ON AOU N
SSME ACTUATOR FORCE +5 DEGREES

* NOZZLE VECTOR CAPABILITY WITH
SSME ACTUATOR STROKE (11.39 IN.
REQUIRED; 10.90 IN. AVAILABLE) = +4.8 DEGREES %. AcruAToP

o SPLASHDOWN CONSIDERATIONS

* MARGINAL (WITH FORCE LIMITED TO 110, 000 LB) ... IO. I. . Pb P.- .

* WORST CASE STROKE = 5.2 IN. SSME C T LATION-

* WORST CASE VECTOR ANGLE = 3.2 DEGREES

8 7 6 5 4 2 1
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was found to be 10. 38 inches and the actuator only capable of 10. 90 inches. These

very marginal functional requirements, plus being marginal at the maximum splash-

down load (110, 000 pounds) could cause a serious lack of growth capability.

3. TUL 13879-SSME Actuator (Modified) and Baseline Pivot Point
Nozzle Installation

This layout is similar to the others except that the SSME actuator was modi-

fied to meet the nozzle functional requirements plus provide for adequate growth.

It was found that by repositioning the actuator to yield a 55.3 inch lever arm, the

stroke reduced to 10. 07 inches, therefore not requiring a stroke change to the SSME

unit (10. 90 inches). However, the effective piston area would have to be increased

15 percent to satisfy the nozzle torque requirements. In effect these new sizing

parameters are similar to those of the newer SRB actuator, therefore any advantage

in the SSME actuator would be lost during this extensive rework.

4. TUL 13918A-SRB Actuator (Modified) and Configuration 1-1A
Nozzle Installation

The Actuator Kinematics for the 1-1A configuration is shown in Layout

Drawing TUL 13918A. This layout was approached similar to the other actuator

installation except that Thiokol defined the SRB actuator requirements. Starting

with a maximum nozzle torque of 4.424 x 106 in. lb (a preliminary estimate for the

4. 226 X 106 in. lb.now reported) the SRB actuator requirements were defined as follows:

a. Actuator splash down load 258, 000 lb max

b. Actuator stall force load 102, 400 lb

c. Actuator total stroke'(satisfying all conditions)

14. 18 in.

d. Nominal moment arm (hot) 63.2 in.

The original SRB TVC Servoactuator had a 173, 000 stall load capability and

a total travel of 11. 50 inches. Thiokol adjusted the actuator envelope in accordance

with the new kinematic requirements.

To satisfy the -+5 requirement during ground checkout and all flight conditions

the actuator stroke requirements must consider the differences in null lengths
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SSME ACTUATOR INSTALLATION STUDY
SRM CONFIGURATION (CONT)

LAYOUT NUMBER 3 (BASELINE PIVOT POINT)

USE MODIFIED SSME ACTUATOR, MSFC SKIRT, AND TC CONFIGURATION 1 AND 2 NOZZLE

ACUTATOR AND NOZZLE REQUIRED BY SSME ACTUATOR CAPABILITIES

DATA DESIGN OR LAYOUT BASED ON 3,600 PSI COMMENTS

TORQUE (IN-LB) ACTUATOR TORQUE = (FORCE) (MA) NOT ACCEPTABLE
6

(4.11) (106) jRETRACT TORQUE = (3.34) (10 )

EXTEND TORQUE = (3.56) (106)

STROKE (IN.)

EXTEND 4.87 5.275 ACCEPTABLE z

RETRACT 4.72 5.623
A p ALLOWANCE 0. 05 -- -U_.U L.C - .

CROSSTALK ALLOW. 0.03 --

COMPLIANCE 0.40 --

TOTAL STROKE 10.07 10.90

* POTENTIAL MODIFICATIONS TO ACTUATOR

REQUIRED ACTUATOR FORCE = MAX TORQUE (4. 11) (106
) 

= 72,635 LB
SREQUIREDMIN MA 52.94

PERCENT OF INCREASE IN SSME ACTUATOR FORCE CAPABILITY REQUIRED 72,635-63,036 (100) = 15.1%

* "INCREASE PRESSURE" MODIFICATION TO ACTUATOR

SSME NOMINAL SUPPLY PRESSURE MUST INCREASE FROM 3,600 X 1.151 = 4,144 PSIG C.rO .-

NOMINAL PISTON AREA MUST INCREASE FROM 24.83 X 1.151= 28.58 SQUARE INCHES

NOMINAL PISTON DIAMETER MUST INCREASE FROM 5.62 TO 6.03 INCHES

* MAJOR PROBLEM AREAS O. sI LAYouT o

* MUST MODIFY SSME OR CREATE NEW ACTUATOR

a SPLASHDOWN CONSIDERATIONS-ACCEPTABLE ICSO- O -~O Z

* WORST CASE STROKE = 0. 88 IN. 1. ,

" WORST CASE VECTOR ANGLE = 1. 3 DEGREES R-O r z-o - V,'t,4-,--

CTUME TUTO

PS*S-LINE PIVOT POINT

I rZO --zo ,I"
8 7 6 I 5 1 3 2
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resulting primarily from the flexible bearing pivot movement and the bearing axial

deflections due to SRM internal motor pressure. This results in a stroke increase

of 2.41 inches.

Included in this study as in the previous studies were allowances for cross-

talk, compliance, and aft polar boss axial movement.

3.3.4 Nozzle Field Joint

The interface between the SRM and the aft skirt may make it necessary to

include a field joint in the SRM nozzle. Early in this contract, data were received

(NASA Drawing 10A00306) which showed that the clear opening in the aft skirt was

approximately 124 inches in diameter. In mid-June, Thiokol received data on a

revised aft skirt which has a clear diameter of 132. 8 inches. The field joint location

is shown on figures 3-31 and 3-32 with the details more clearly shown on figure 3-44.

As shown, the upper half of the field joint is an integral part of the exit cone housing.

The lower half of the field joint consists of a steel piece secured to the fiberglass

structure of the exit cone. Incorporating the field joint into the exit cone housing is

an efficient lightweight approach because the joint is at a small diameter. Addition of

the field splice as shown adds approximately 300 pounds to the SRM nozzle.

Under consideration at the present time is the possibility of moving the field

joint just aft of the compliance ring and incorporating the field joint with the nozzle

cutoff device. This concept has not been definitized to the point that weight data are

available.

The joint as shown is a technically feasible approach that has the advantage

of being incorporated in the exit cone/main structure. If other considerations make

it desirable to move the field joint to incorporate it with the compliance ring, it is

felt that a feasible concept can be identified. It is expected, however, that because

of the larger diameter, the field joint weight penalty would increase. Evaluated from

a nozzle manufacturing point of view, the addition of a field joint presents no significant

problems.
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DESIGN CONSIDERATIONS

* MAX SKIRT CLEARANCE -- 124 IN. DIA (DWG 10A00306)

* COMPLIANCE RING >124 IN. DIA

* FIELD JOINT MUST BE ABOVE COMPLIANCE RING

* MINIMUM WEIGHT DESIGN OCCURS IF FIELD JOINT IS AT

AFT END OF METAL STRUCTURE

ADDITIONAL WEIGHT DUE TO FIELD JOINT = 292 LB

FIELD JOINT

STEEL

GLASS OVERWRAP

Figure 3-44. Field Joint



3.3.5 Nozzle Cutoff

The water impact loads on the nozzle and actuators can be significantly re-

duced if the exit cone is cut off prior to water impact and, in fact, the loads data

used in the nozzle analyses have assumed that the nozzle cone is off at water impact.

Figures 3-31 and 3-32 show a nozzle cutoff device located just aft of the nozzle

compliance ring. This location permits maximum amount of nozzle exit cone to be

severed and still allows the actuators to remain attached to the nozzle at water impact.

The nozzle cutoff device is shown in more detail on figure 3-45.

Data did not exist in industry to define the size of a linear shaped charge

(LSC) that would be required to sever the glass/carbon phenolic exit cone. To

obtain sizing data to design the nozzle cutoff device, Thiokol conducted tests on

subscale samples of glass structure over a carbon phenolic liner.

From these tests, the penetration and cutoff capability of a linear shaped

charge as a function of charge size was obtained. These data are presented on

figure 3-46. The figure also presents similar data for penetration and cutoff in

steel. From figure 3-46, it is apparent that a 300 grain/foot charge will cut

through the 1. 6 inch thick exit cone wall which remains after motor firing. To

provide a safety factor, a tentative charge size selection of 500 + 100 grains/foot

has been selected.

Alternate concepts to reducing the water impact loads on the actuator system

are still under consideration. At the present time the two alternates which appear

to be the most feasible would both require moving the nozzle field joint to a location

just aft of the nozzle compliance ring and incorporating the field joint as part of

the compliance ring. The first alternate configuration would use a few small bolts

in the exit cone joint. The joint and bolts would be sized so that the bolts would fail

and allow the exit cone to shear off before a load sufficient to damage the actuator

would be seen. Th second alternate configuration uses a Marman clamp on the

nozzle cutoff joint to resist longitudinal loads. The joint would be designed with a

shear lip or shear pins to react transverse loads. The philosophy is that if the

Marman clamp should be inadvertnetly jettisoned during flight, the axial thrust
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FIBERGLASS
OVERWRAP BRACKET

PRIMER .FIBERGLASS OVERWRAP

ALUMINUM BRACKET (BOTH SIDES)

SOFT RUBBER CHARGE SUPPORT
500 (+ 100) GR/FT RDX-COPPER SHEATH LSC
SCREWS

HEADER AND EXPLOSIVE LEAD ASSY
(4 PLACES)

TOTAL NOZZLE CUTOFF
DEVICE WEIGHT = 49 LB

Figure 3-45. Nozzle Cutoff Device
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PENETRATION
1.5 IN COMPOSITE

1.5

- JRC CATALOG DATA,

( CUT IN COMPOSITE CUT IN STEEL

(PREDICTED)
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0.7

0.4

0.3

PENETRATION IN STEEL

CUT'r I STEEL
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Figure 3-46. Penetration and Cut by RDX Core Copper Sheath LSC
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forces in the nozzle would be in a direction to hold the exit cone joint closed, the shear

lip or pins would resist transverse loads and the nozzle would hold together.

After motor burnout and prior to water impact, the Marman clamp would be

removed by ordnance devices. 'With the Marman clamp removed and without the

thrust forces in the exit cone, the aft portion of the exit cone would fall free and a

shortened nozzle would be achieved at water impact.

CONCLUSIONS

It is recognized that further SRB configuration changes will require a

continuing update and re-evaluation of the nozzle design. During the contract a

considerable number of interim designs have been made, but no significant difficulties

have been identified, thus, it is apparent that the nozzle design can be adapted to

the motor, aft skirt, actuator, and launch pad interfaces.
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